
209
International Scientific Conference “UNITECH 2021” – Gabrovo

INTERNATIONAL SCIENTIFIC CONFERENCE
19-20 November 2021, GABROVO

MOBILE ROBOT CONTROL USING ROBOT OPERATING SYSTEM

Uroš Pešović1, Marko Marković1, Velibor Trifunović1, Slađana Đurašević1,
Željko Jovanović1

1 Faculty of technical sciences Čačak, University of Kragujevac, Serbia

Abstract
Mobile robots can move freely throughout their working environment in which they can encounter known and

unknown obstacles. The main tasks of mobile robots are terrain mapping, localization, path planning, and motion
control could be significantly complex to implement on bare robot software. ROS represents a framework that enables
the usage of a wide array of algorithms for mobile robots which can be easily used by various robot platforms. In this
paper, we presented the implementation of ROS on a simple robot with a differential drive. This widely available robot
platform can be used by a student to implement complex navigation algorithms which are supported by ROS.

Keywords: mobile robot, differential drive, ROS, Arduino.

INTRODUCTION

Mobile robots are a class of robots that can
move freely through their environment. Robots
must possess a certain level of autonomy and
intelligence that allows them to perceive and
react to obstacles. Fundamental problems in
mobile robotics are terrain mapping,
localization, path planning, and motion control
[1, 2]. These tasks can be significantly
complex to implement on the bare robot
control software. Furthermore, such
implementation will be applicable only for
certain robot types, making poor code
reusability.

Robot operating system (ROS) is a
framework that represents a collection of tools,
libraries, and conventions aimed at simplifying
the process of programming complex robot
behavior on a wide range of robotic platforms.
The need for such a platform arose due to the
constant progress of robotics, which is
reflected in placing increasingly difficult tasks
before robotic systems. For this reason, robot
programming is a very difficult job for an
individual and requires a lot of time and
knowledge in various fields. In the classic way
of programming robots without the use of
ROS, the created programs were strictly
related to hardware and could not be
implemented on other robotic platforms
without major crucial changes. The idea of

ROS is to always provide an initial level in
programming, so it is not necessary to always
move from the beginning, but it is possible to
apply ready-made standardized algorithms that
can be implemented on different robot
platforms, i.e. the possibility of reusing the
created software is provided. ROS provides a
set of tools to support many common robotic
problems, such as path planning, collision
detection, image processing, and many others,
which is one of its main advantages, with the
primary purpose of ROS being to create
software for mobile robots. The need for such
a robot programming system has led to ROS
today being the most commonly used
framework for mobile robot programming and
more than 50% of mobile robots working
using ROS. There are numerous ROS
implementations on mobile robot platforms
which are used as teaching aid [3, 4, 5]

In this paper, we presented the
implementation of ROS on a simple mobile
robot with a differential drive. This widely
available robot platform can be used by
students to implement complex navigation
algorithms which are supported by ROS.

ROBOT OPERATING SYSTEM

The Robotic Operating System (ROS) is
not a real operating system, but a framework
for writing control programs for mobile robots.

 2021

210
International Scientific Conference “UNITECH 2021” – Gabrovo

The ROS project was started by Morgan
Quigley in 2007 at Stanford University [6].
ROS requires a real operating system for its
operation, such as officially supported Linux
Ubuntu and Mac OS. Although ROS is not a
true operating system, it offers standard
operating system content, such as hardware
abstraction, low-level device control, inter-
process messaging, and packet management.

ROS creates a peer-to-peer network in
which all processes are connected. Any
process (node) in the system can access the
network, communicate with other processes,
and exchange data on the network. A robot
control system usually contains many nodes,
for example, one node controls the wheel
motors, one node performs path planning, and
so on. The ROS node is written in C, Python
or Lisp using roscpp, rospy or roslisp ROS
client compilers [7]. The ROS master controls
communication between all connected nodes.
Without it, nodes would not be able to find,
exchange messages or connect services. Nodes
communicate with each other by forwarding
messages. A message is a simple data structure
that contains specific fields. Messages are
routed via the transport system on a
subscription basis. The subject is the name
used to identify the content of the message.
When a node sends a message by posting on a
given topic, a node that is interested in a
particular type of data will subscribe to the
appropriate topic where there may be multiple
publishers and subscribers for the same topic.
The publisher and the subscriber are not aware
of each other's existence. The communication
between the nodes is shown in Fig. 1.

A ROS service is a type of request/response
interaction between processes. The topic is an
asynchronous way of communication between
nodes. The service serves to satisfy need for
synchronous communication between nodes.

Fig. 1. Communication between ROS nodes

MOBILE ROBOT IMPLEMENTATION
The mobile robot is based on the Robot

Smart Car Chassis Kit platform. This robot
platform is designed as a platform for learning
the initial steps from the world of mobile
robotics, but it has all the elements necessary
to perform a project task. The Smart Car
Chassis Kit includes perforated Plexiglas
chassis, two DC motors with reducers, two
optical encoders, two plastic wheels and one
pilot wheel. The mobile robot is controlled by
ROS running on Raspberry PI4 computer
which executes high-level algorithms for robot
navigation, and by Arduino UNO
microcontroller which performs low-level
control of drive motors using driver L298N.
Block diagram of mobile robot control system
is shown in Fig. 2. The entire robot is powered
by a rechargeable Li-po battery.

Fig. 2. Architecture of mobile robot

ROS is implemented on Raspberry PI4, a

credit card format microcomputer, which is
typically used for demanding embedded
applications. Raspberry PI4 uses a quad-core
ARM Cortex-A72 64-bit processor operating
at 1.5GHz with 4 GB of RAM. It also features
a wide range of wired and wireless interfaces,
such as IEEE 802.11ac, Bluetooth 5.0 BLE,
Gigabit Ethernet and several USB ports.
Operating system Ubuntu 20.04 was installed
on SD card, after which ROS Noetic
framework is installed. In order to use ROS,
it’s first necessary to initialize the master node
using roscore command, after which specific
algorithms can be executed using rosrun
command.

Rosserial is a protocol that enables the
communication between ROS and serial
devices, over a serial transmission line. In the
Rosserial client-server implementation, the
client is our case Arduino microcontroller
while the server is a Raspberry PI4 computer
on which ROS is installed. Rosserial packets
are used to exchange via the serial link using
the USB bus. The Arduino sends the data to

211
International Scientific Conference “UNITECH 2021” – Gabrovo

the ROS as messages that have a header and a
tail, thus enabling subscription and publishing
on multiple topics.

The structure of rosserial packet, shown in
Fig. 3., consists of several fields. The first byte
is used for synchronization and the second
byte represents Protocol Version/Sync Flag.
The following two bytes represent message
length N and the fifth byte is a checksum of
the message length. The sixth and seventh
bytes are dedicated for Topic ID where values
in the range from 0 to 100 are reserved for
system functions. The remaining N+1 bytes
are used for serial data and its checksum.

Fig. 3. Structure of rosserial packet

The packet checksum fields are calculated

using the formula 1.

255 - (ΣBytes) % 256) (1)

The communication between the Arduino
and Raspberry PI4 computer will start from
the Raspberry side, which will send a query
packet for getting the number of topics, names,
and types of topics from the Arduino side.
When the Arduino gets this query packet, it
will reply to the Raspberry with a series of
response packets. The mobile robot is controlled
from ROS using wireless keyboard by
executing commands depending on the pressed
key. Based on the user input, ROS calculates
linear and angular velocities which are published
in form of the packet as shown in Fig. 4.

Fig. 4. Generation of linear and angular velocities

in ROS

The Arduino microcontroller receives
movement commands from ROS running on
Raspberry PI4. Communication is carried
using rosserial protocol via the USB interface.
Based on the linear vlin and angular speed ωang
data, received from the ROS, the Arduino
calculates the individual speed of rotation of
the right and left drive wheels ωr and ωl. These
angular drive wheel speeds are calculated
using the diameter of drive wheels r=65 mm
and wheel separation distance d=130 mm as
shown by formula 2.

 (2)
Since this robot has a differential drive, it is

necessary to coordinate the movement of both
drive motors to steer the robot as shown in Fig.
5. [8]. To drive a robot on a straight line it is
necessary to rotate both wheels in the same
direction with equal speed. For example, if the
robot must turn to the right, the speed of the
right wheel must be lower, in relation to the
speed of the left wheel. To rotate the robot
around its center, wheels need to rotate at the
same speed but in different directions.

Fig. 5. Types of movement for robot with

differential drive

For the robot to move at the required speed,
it is necessary to regulate the speed of the
rotation of each wheel. The regulation is
performed by the PI regulator based on a
comparison of the wheel setpoint value and the
measured value of the wheel rotation speed.
Wheel speed is measured by optical encoders
connected to drive wheels, which generate 20
pulses per wheel rotation. Each encoder is
connected to Arduino interrupt pin which
triggers the appropriate interrupt routine for
every pulse to update absolute wheel position.

To control the speed of each wheel, two PI
controllers are implemented in the Arduino
program. Their output is send to motor driver

212
International Scientific Conference “UNITECH 2021” – Gabrovo

in form of the PWM signal which controls the
motor velocity, while the motor direction is
controlled by motor driver H-bridge. The
mobile robot chassis with both controllers is
showed on Fig. 6, where Arduino Uno, motor
driver and Li-po battery can be viewed from
above, while Raspberry PI4 and motor drivers
with encoders can be viewed from below.

Fig. 6. Mobile robot viewed from above and below

CONCLUSION

Robotic systems have made rapid progress in
recent years thanks to computing power and
artificial intelligence. This progress of robotic
systems is reflected in the increasing degree of
independence and the possibility of creating a
critical way of decision-making, which is
characteristic of humans. For this progress to be
possible, it was necessary to upgrade existing
robot programming software or create new ones
that would allow for rapid development and
testing. Robotic Operating System (ROS) was
created in response to all previous requirements,
from its inception until today it has been
constantly improved and refined so that a large
number of robots base their programming on the
application of ROS. The paper presented the
implementation of ROS on a simple robot with a
differential drive. Future work will be focused
on the integration of robot sensor data into ROS
to generate terrain maps and implement various
obstacle avoidance algorithms.

ACKNOWLEDGEMENT
The research in this paper was supported by

the Ministry of Education, Science and
Technological Development of the Republic of
Serbia, as part of the Project grant no. 451-03-
9/2021-14/200132 with University of Kragujevac -
Faculty of Technical Sciences Čačak.

REFERENCE
[1] Nourbakhsh I., Seigwart R., Introduction to

Autonomous Mobile Robots, A Bradford Book
The MIT Press, 2004, ISBN:978-0-262-19502-
7

[2] Salichs M. A., Moreno L. E., Navigation of
mobile robots: Open questions, Robotica,
Volume 18, Issue 3, May 2000, pp. 227-234

[3] Zubrycki I., Granosik G., Introducing modern
robotics with ROS and Arduino, Journal of
Automation Mobile Robotics and Intelligent
Systems, 2014, Vol. 8, No. 1, pp. 69-75, DOI:
10.14313/JAMRIS_1-2014/9

[4] West A., Arvin F., Martin H., Watson S.,
Lennox B., ROS Integration for Miniature
Mobile Robots, Annual Conference Towards
Autonomous Robotic Systems TAROS 2018,
25-27 July, Bristol, United Kingdom, pp 345-
356, DOI: 10.1007/978-3-319-96728-8_29

[5] Araujo A., Portugal D., Couceiro M., Rocha R.,
Integrating Arduino-Based Educational Mobile
Robots in ROS, IEEE 13th International
Conference on Autonomous Robot Systems and
Competitions, Lisbon, Portugal, 2013, DOI:
10.1109/Robotica.2013.6623520

[6]Quigley M., Gerkey B., Smart W. D.,
Programming Robots with ROS, O’Reilly
Media, 2015, ISBN: 978-1449323899

[7] Martinez A., Fernandez E., Learning ROS for
Robotics Programming, Packt Publishing, 2013,
ISBN: 978-1783987580

[8] Djurasevic S., Milovanovic A., Correction of
Systematic Errors in Odometry Model for
Position Determination of Mobile Tracked
Robot, 52nd International scientific conference
on information, communication and energy
systems and technologies (ICEST 2017), Niš,
Serbia, June 28-30, 2017.

	introduction
	Robot operating system
	MOBILE Robot IMPLEMENTATION
	CONCLUSION
	Acknowledgement
	REFERENCE

