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Abstract 
The first part of the paper describes an algorithm for estimating the fundamental frequency of a speech signal using 

the autocorrelation function. The fundamental frequency is determined based on the position of the maximal component 
of the autocorrelation function. Due to the discrete structure of the autocorrelation function, an estimation error 
occurs. The second part of the paper describes an algorithm for estimating the fundamental frequency in which 
parametric convolution with a 1P Keys kernel is applied. The last part of the paper presents the results of an 
experiment in which the optimal parameters of the 1P Keys kernel for some classical, time symmetric, window functions 
were determined. Comparative analysis of the results showed the high precision of the proposed algorithm.  
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1. INTRODUCTION 
    With the intensive development of the 
information technologies, the possibilities for 
wide implementation of Digital Signal 
Processing (DSP) have drastically increased. 
In this way, it is possible to archive a large 
amount of data, as well as their transmission 
via communication systems [1]. Among other 
things, DSP systems are used in the processing 
of the audio, speech and music signals, image 
and video signal processing [2]. 
 

In Digital Speech Processing, intensive 
work is being done on the development of 
algorithms for: a) speaker recognition, b) 
semantic speech recognition, c) speaker health 
analysis, d) language recognition, e) speech 
extraction from the background noise, f) 
dereverberations, d) echo suppression, h) 
speech signal quality corrections, etc. [1,3]. 
Modern information systems are applied to 
music, starting from composing, performing, 
archiving, to transferring music material over 
the Internet, etc. [4]. In addition, analyzes and 
evaluations of certain parameters of musical 
instruments are performed. By analyzing the 
work of musical instruments and forming its 

model, virtual musical instruments are created 
that sound to a large extent like the original 
[5]. Algorithms for analysis of the music 
signals are current, as well as information 
systems in which they are implemented, for: a) 
detection of instruments and timbre colors, b) 
note onset time detection, c) recognition of 
chords and their transcription, e) beat and 
rhythm, f) isolation and transcription of solo 
and bass lines, d) Singing Voice Extraction,... 
[6]. 
 

Many of the mentioned algorithms are 
based on the estimation of the fundamental 
frequency, F0, audio and speech signal. A 
number of algorithms for estimating F0 have 
been developed. Analyzes are performed in: a) 
time-domain (TD) and b) frequency-domain 
(FD) [7]. The time domain estimation 
algorithms are based on the analysis of time 
waveforms. If the waveform of the signal is 
periodic, then the period can be observed and 
F0 can be estimated on its basis. The TD 
algorithms intensively uses autocorrelation 
functions [8] to detect the pitch period. In [7], 
an algorithm, called the YIN algorithm, where 
the estimation is performed using the 
autocorrelation function (ACF), was proposed. 
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The ACF of a discrete periodic signal is a 
discrete and a periodic function [11]. The ACF 
components have a time interval witch equal 
to the sampling time periods, TS, of the signal. 
Determining the period of the discrete signal 
implies locating the first, dominant peak, at the 
ACF. Then the fundamental frequency is equal 
to the reciprocal of the time shift of the peaks 
in relation to the beginning of the ACF. Here, 
the problem of estimating of the fundamental 
frequency arises when the actual dominant 
peak of ACF  is not located on an integer 
product of TS, but somewhere between two 
adjacent components with the highest energy. 
In this case, estimation of the position is 
performed by selecting the position of the peak 
and, thus, a significant estimation error F0 
occurs. The estimation error reduction can be 
done by applying an interpolation algorithm. 

 
This paper describes the algorithm for 

estimating the F0 of the speech signal using: a) 
autocorrelation function and b) parametric 
cubic interpolation. Interpolation was 
performed using a 1P Keys kernel [9]. An 
experiment, in which some standard, time-
symmetric window functions (Hamming, 
Hann, Blackman, Rectangular, Kaiser and 
Triangular) are modified: a) specially designed 
audio test signal and b) speech signal, is 
described. After that, an estimate of the F0 was 
performed, the MSE was defined and 
determined, and, based on it, the optimal 
values of the αopt kernel parameter for various 
window functions were determined. 
Comparative analysis determined the window 
function with the lowest MSE. The efficiency 
of the proposed algorithm, by comparative 
analysis with the results of the F0 estimate 
based on finding the ACF maximum, was 
determined. 
 

The further organization of this work is as 
follows. Section 2 describes the fundamental 
frequency estimation error. Section 3 presents 
an algorithm for estimating the fundamental 
frequency using an autocorrelation function. 
Section 4 describes the experiment, presents 
the results, and performs a comparative 
analysis. Section 5 is the conclusion. 
 

2. ESTIMATION F0 USING 
AUTOCORRELATION  
    Correlation is a measure of the similarity of 
two signals. It is defined as the similarity of 
one signal at time k and another at time k + m. 
In this case, the correlation function is cross 
correlation. The autocorrelation function is a 
measure of the similarity of the same signal at 
time k and at time k + m. For a discrete signal 
x(n), whose length is N, an autocorrelation 
function is defined by [11]:   
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In fig. 1.a the Speech test signal x(n) is 

shown. Its autocorrelation function rcorr is 
shown in Fig. 1.b. The waveform of x can be 
complex and unsuitable for determining 
periods. The autocorrelation function rcorr is 
more suitable for calculating the signals 
period. In fig. 1.b the position of the maximum 
of the autocorrelation function is denoted by 
Nmax. The signal period is T0 = Nmax * TS, 
where TS is the sampling frequency of the time 
continuous signal x(t). The fundamental 
frequency of the signal x(n) is F0 = 1 / T0 = 1 / 
(Nmax * TS). Determining the position of the 
maximum component of the autocorrelation 
function is realized by the Peak-Picking 
algorithm. 
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Fig. 1. Speech test signal: a) time waveform and b) 

autocorrelation function.  
 

After determining the autocorrelation 
function and locating the peak, it is possible to 
accurately estimate the fundamental frequency 
only for signals whose fundamental frequency 
is F0 = 1 / (k * TS) for k = 1, 2, 3,... For signals 
whose fundamental frequency F0 is in the 
interval (k + 1) * TS) < F0 <1 / (k * TS), the 
estimation is performed by rounding and, thus,  
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causes an estimation error. The calculation of 
F0 is realized using the Nearest Neighbor 
method. In fig. 2.a shows the actual F0 of the 
signal x sampled with FS = 8 kHz in the range 
(125 - 126.9841) Hz, which corresponds to the 
components k = 64 and k = 65 of the 
autocorrelation function (symbol ‘-’). Using 
the Peak-Picking algorithm, the values of F0 
for node k = 64 and k = 65 (symbol ‘o’) were 
calculated. The estimated values of the 
fundamental frequency, F0NN, determined by 
applying the Nearest Neighbor method in the 
interval k = (64.65) are shown by the symbol ‘-’. 
The estimation error, e(f), is shown in Fig. 2.b. 
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Fig. 2. a) Fundamental frequency F0 trajectory between 
(64-65) autocorrelation components, value F0node in 

nodes k = {64, 65}, and value F0NN estimated by 
rounding. b) estimation error e caused by rounding.  

 
Reducing the fundamental frequency 

estimation error, e(f), can be done by applying 
interpolation. By interpolation, based on the 
position of the maximum value of the 
autocorrelation function, Nmax, a series of m = 
{Nmax -1, Nmax, Nmax + 1, Nmax + 2} is formed 
and the position of the maximum is 
interpolated and, based on it, the fundamental 
frequency is calculated.  
 
3. FUNDAMENTAL FREQUENCY 
ESTIMATION ALGORITHM  
    The algorithm for estimation of the 
fundamental frequency is applied over the i-th 
block xI of the signal x, and consists of the 
following steps: 
 
Input: xI - frame of discrete signal x. N - frame 
length. F0 -fundamental frequency. TS - 
sampling period. 
 
Output: Fe - estimated fundamental frequency. 
 
Step 1: The xI signal is modified by the 
window function w: 

IW I= ∗x x w                              (2) 
 
Step 2: Determine the autocorrelation function 
rX, 
 
Step 3: Using the Peak-Picking algorithm, the 
position of the maximum of the 
autocorrelation function, Nmax, is calculated. 
 
Step 4: By applying parametric interpolation 
with the interpolation kernel rPCC, the 
continuous function RX is determined. 
 
Step 5: By differentiating the function RX and 
equalizing with zero, the position of the 
maximum between the two nmax samples is 
determined. The real position of the maximum 
is NM = Nmax + nmax. 
 
Step 6: The estimated fundamental frequency 
is: 

 
( )( )max max1e SF N n T= + ⋅                            (3) 

 
Step 7: The mean square error of the 
fundamental frequency estimate is: 

 
2

0( )eMSE F F= −                                       (4) 
 

In the continuation of this paper, an 
experiment is described in the framework of 
which the efficiency of the fundamental 
frequency estimation algorithm at Sine and 
Speech signal was tested. 
 
4. EXPERIMENTAL RESULTS AND 
COMPARATIVE ANALYSIS  
     
4.1 Experiment 
 

An experiment, in which the fundamental 
frequency of the test signal was estimated 
using autocorrelation, was conducted. 
Increasing the estimation accuracy was 
achieved by applying parametric cubic 
interpolation. The 1P Keys interpolation kernel 
was applied. 1P Keys kernel optimization was 
performed by determining the optimal 
interpolation parameter αopt. The optimal 
parameters of the interpolation kernel were 
determined using the algorithm described in 
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Section 3. Signal modification was performed 
with standard, time-symmetric, window 
functions, as follows: a) Hamming, b) Hann, c) 
Blackman, e) Rectangular, e) Kaiser's and f) 
Triangular. The minimum Mean Square Error, 
MSEmin, was determined for each window 
function. After that, the optimal values of the 
parameters ptopt. Finally, the efficiency of the 
fundamental frequency estimate, determined 
by applying interpolation, was determined by 
comparison with MSE when the Peak-Picking 
algorithm was applied. 
 
4.2 Test signal 
 

Testing of fundamental frequency 
estimation algorithms was performed using 
two test signals, as follows: a) Sine test signal, 
and b) Speech test signal. The sine test signal 
is defined by [10]:  
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where F0 is the fundamental frequency, θi and 
ai are the phase and amplitude of the i-th 
harmonic, K is the number of harmonics, M is 
the number of points between two samples in 
the spectrum in which PCC interpolation is 
performed. The frequency of the sampling 
signal is FS = 8 kHz and the length of the 
window function is N = 256 (T = 32 ms). The 
results presented in the further part of the 
paper refer to F0 = 125-126.9841 Hz. The 
number of frequencies in the specified band 
for which the assessment is performed is M = 
100. The sinusoidal test signal is with K = 10 
harmonic amplitudes a = {0.98, 0.34, 0.2, 0.2, 
0.34, 0.18, 0.19, 0.2, 0.34, 0.1}. 
 
4.3 Results 
 

By applying the algorithm, described in 
Section 3, over the test signal, a modification 
of the window functions was performed. The 
MSE trajectories are shown in: a) fig. 3 
(Hamming), a) fig. 4 (Hann), a) fig. 5 
(Blackman), a) fig. 6 (Rectangular), a) fig. 7 
(Kaiser) and a) fig. 8 (Triangular). The values  
 
 
 

of the optimal parameters aopt and the 
minimum values of the mean square error 
MSEmin = MSE (aopt) are shown in Table 1 
(Sine test signal) and Table 2 (Speech signal). 
The MSE for the Peak-Picking algorithm is 
MSEpp = 0.3251. 
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Fig. 3. MSE for Hamming window. 
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Fig. 4. MSE for Hann window. 
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Fig. 5. MSE for Blackman window. 
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Fig. 6. MSE for Rectangular window. 
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Fig. 7. MSE for Kaiser window. 
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Fig. 8. MSE for Triangular window. 

 
Table 1. Sine test signal: MSEmin and αopt for 1P Keys 
kernel. 

Window αopt MSEmin MSEPP/ 
MSEmin 

Hamming -0.5600 0.0015 216.7333 
Hann -0.5600 0.0021 154.8095 
Blackman -0.5550 0.0040 81.2750 
Rectangular -0.5500 0.0019 171.1053 
Kaiser -0.5600 0.0010 325.1000 
Triangular -0.5600 0.0014 232.2143 

 

Table 2. Speech test signal: MSEmin and αopt for 1P 
Keys kernel. 

Window αopt MSEmin MSEPP/ 
MSEmin 

Hamming -0.5325 0.0266 12.2218 
Hann -0.5350 0.0285 11.4070 
Blackman -0.5350 0.0244 13.3237 
Rectangular -0.4750 0.0097 33.5154 
Kaiser -0.5350 0.0247 13.1619 
Triangular -0.5350 0.0286 11.3671 

 
4.4 Analysis of results 

 
Based on the results shown in Table 1 and 

Table 2, it is concluded that the minimum 
MSE is for: 

 
a) Sine test signal MSEmin = 0.001, aopt = 

-0.5600 for Kaiser window function. 
Compared to MSE for the Peak-Picking 
algorithm using interpolation with the 1P Keys 
kernel, the estimation error is less than MSEpp 
/ MSEmin = 0.3251 / 0.001 = 1000 times [11]. 

 
b) Speech test signal MSEmin = 0.0097, 

aopt = -0.4750 for Rectangular window 
function. Compared to MSE for the Peak-
Picking algorithm using interpolation with the 
1P Keys kernel the estimation error is less 
MSEpp / MSEmin = 0.3251 / 0.0097 = 
33.5154 times. 

 
The error with estimating of the 

fundamental frequency of the speech signal in 
relation to the sine signal is 0.0097 / 0.001 = 
9.7 times smaller. 
 
5. CONCLUSION 

The paper presents an algorithm for 
estimating the fundamental frequency of audio 
(sine and speech) signals witch based on the 
autocorrelation function. The increase in 
estimation accuracy was performed by 
applying PCC interpolation with a 1P Keys 
kernel. Detailed analysis showed that the MSE 
of the Sine test signal was 325.1 less than the 
application of the Peak-Picking algorithm in 
the case of the application of the Kaiser 
window function and aopt = -0.56. MSE error 
with Speech test signal 33.5154 less compared 
to using Peak-Picking algorithm, for 
Rectangular window functions and aopt = -
0.4750. The MSE estimation error code at the 
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Speech signal compared to the Sine signal is 
9.7 times smaller. These results provide a 
recommendation for the application of the 
proposed autocorrelation algorithm in systems 
for operation in real mode.  
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