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Abstract 
This paper presents an artificial neural network (ANN) approach for design optimization of magnetic gear device. 

Proposed approach employs the ANN as an optimization problem parameters preselection. ANN is trained over a finite 
element method numerical magnetic model results. 3D solver based on T-Ω formulation is used for axial magnetic gear 
magnetic field modeling. Radial basis function (RBF) ANNs are used in the optimization method implementation.  
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INTRODUCTION 

Design optimization of electromagnetic 
devices is a complex computational problem. 
Depending on used problem formulation 
electromagnetic design optimization can be 
considered as ill-posed inverse problem [1, 2]. 
Many electromagnetic applications could 
require solving of such inverse problems 
concerning parametric design optimization, but 
in complex devise structures computational 
complexity could limit the quality of the 
obtained solution [3-5]. 

Many engineering systems optimization 
tasks are causing problems for which the 
artificial neural networks (ANN) can be 
successfully applied [6,7]. Real world tasks 
lead to inverse problems which are in most 
cases ill-posed. If a standard ANN approach is 
applied to such inverse problems in a 
straightforward manner, the model will either 
converge approximating the target data and 
representing their average value, or will not 
converge in some cases of infinite number of 
output values for each input. These approaches 
frequently provide very poor performance, 
since the average of the possible solutions is 
not necessarily itself a solution. The ANNs 
could be applied as a fast unstructured 
algorithmic approach with low computational 
cost in numerical field analysis both for 
forward and inverse problems. At present 
ANNs are well developed and documented 
techniques for a wide range of data processing 
applications. [3-7] 

This paper presents an artificial neural 
network (ANN) approach for design 
optimization of magnetic gear device. 
Proposed approach employs the ANN as an 
optimization problem parameters preselection. 
ANN is trained over a finite element method 
numerical magnetic model results.  
 
AXIAL MAGNETIC GEAR 

The design of the axial magnetic gear, 
under consideration, consists of a high-speed 
rotor, modulating steel segments and of a low-
speed rotor. The permanent magnet pairs 
mounted on the high-speed rotor are 2. The 
modulating steel segments are 7. The 
permanent magnet pairs mounted on the low-
speed rotor are 5. Fig. 1 shows the assembly 
view of the magnetic gear. 

 

 
 

Fig. 1. Axial magnetic gear side view. 

 
The sketch of the axial magnetic gear with 

dimensions is depicted in Fig. 2. 
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Fig. 2. Axial magnetic gear sized drawing. 

 
Axial magnetic gear design materials used 

for the modeling are presented in Table II. The 
number of the design elements are shown in 
Table I. 

TABLE I.  NUMBER OF THE AXIAL MAGNETIC GEAR’S ELEMENTS 
AND GEAR RATIO 

Symbol Quantity Value 

p1 high-speed rotor’s permanent magnet pairs 2 

p2 number of the modulating steel segments 7 

p3 low-speed rotor’s permanent magnet pairs 5 

G13 gear ratio 2.5 

 
The dimensions of the elements of the axial 

magnetic gear are shown in Table III.  
 

 
Fig. 3. Axial magnetic gear model mesh isometric 

view.  
 

TABLE II AXIAL MAGNETIC GEAR’S MATERIALS 

Material of the rotor’s yokes low carbon steel AISI 1008 

Material of the permanent magnets NdFeB35 alloy 

Material of the steel segments low carbon steel AISI 1008 

 

The used materials of the rotor’s yokes, of 
the permanent magnets and of the modulating 
steel segments are shown in Table II.  

 

TABLE III AXIAL MAGNETIC GEAR’S ELEMENT DIMENSIONS 

Symbol Quantity Units Value 

d inner diameter mm 30 

D outer diameter mm 50 

THSR thickness of the yoke of the high-
speed rotor 

mm 5 

TPM1 thickness of the permanent magnets of 
the high-speed rotor 

mm 5 

δ1 air gap of the high-speed rotor mm 1 

δ3 air gap of the low-speed rotor mm 1 

TSS thickness of the modulating steel 
segments 

mm 10 

TLSR thickness of the yoke of the low-speed 
rotor 

mm 8 

TPM3 thickness of the permanent magnets of 
the low-speed rotor 

mm 5 

lstack stack length of the axial magnetic gear mm 39 

 
AXIAL MAGNETIC GEAR MODELING  

3D Ansys-Maxwell solver based on T-Ω 
formulation is used for axial magnetic gear 
magnetic field modeling. Specific formulation 
details on similar 3D magnetic gear design 
model could be found in [6]. The FEM mesh of 
the axial magnetic gear model is depicted in 
Fig.3. Surrounding free space domain is not 
shown. The number of the finite elements of 
the axial magnetic gear’s parts are shown in 
Table IV. 

 

TABLE IV NUMBER OF THE FINITE ELEMENTS OF THE AXIAL 
MAGNETIC GEAR’S PARTS 

Domains Number of 
the finite 
elements 

Percentage 
coefficient of the 

number of all finite 
elements, % 

Air 253 984 54.02 
Yoke of the high-speed 

rotor 
62 426 13.28 

Yoke of the low-speed 
rotor 

52 103 11.08 

Modulating steel segments 13 946 2.97 
Permanent magnets 

mounted on the high-speed 
rotor 

52 448 11.16 

Permanent magnets 
mounted on the low-speed 

rotor 

35 251 7.50 

Total 470 158 100 % 
 



32 
International Scientific Conference “UNITECH 2021” – Gabrovo 

ANN FOR OPTIMIZATION 
ANN Input/Output data training is a 

directed method which leads to changes in 
synaptic weights of the ANN neuron links by 
adopting a set of known training examples. 
Each example consists of a unique input signal 
and desired response output. The training is 
performed by continues ANN entrance data 
variation of submitted sample signal and 
corresponding synaptic weights changing so as 
to minimize the difference between the 
resulting output of the ANN and the desired 
signal. This is repeated many times for all the 
examples, while trained to achieve a state of 
ANN for a modification of synaptic weights is 
insignificant. This ANN is trained to match 
inputs to outputs. ANNs have the ability to 
change its synaptic weights depending on 
changes in the environment. This allows to be 
trained ANN and trained again in accordance 
with changes in external conditions of ANNs. 
The combination of the architecture of the 
ANN recognition with their adaptability makes 
them a powerful tool for the realization of 
adaptive classification and identification.  

Accuracy of responses - in the context of 
the problem of recognition, ANN not only 
define an object belonging to a class, but also 
provide information on how accurate is their 
answer. This can be used to optimize the 
classification process. Integrity of information 
- knowledge is coded as a structure in the 
ANN and the activation of neurons that build 
them. Each neuron output weight coefficients 
are potentially influenced by the activation of 
all neurons. Therefore, global integrity of the 
information is a major characteristic of ANN. 
Error resistance - ANN have the potential to be 
resistant to faults. This means that if a small 
fraction of neurons does not work, the 
responses of the network will not change 
substantially. This effect is due to the 
distributed nature of logic remembered by the 
ANN. 

Two parallel approaches are implemented 
here for the electromagnetic design 
optimization. First one is with ANN for 
objective function problem interpolation. 
Second one employs the ANN as an 
optimization problem parameters preselection. 
In both cases radial basis function (RBF) 
ANNs are used. In this specific optimization 

application, we consider single hidden layer 
RBF - ANN where a stochastic gradient 
descent optimization algorithm is used for 
backpropagation, and where the objective 
function minimization is estimated by mean-
square error criterion. The output function y of 
the ANN could be defined by the following 
expression,  

1
( ) ( )

n

ANN i i
i

f w b
=

= +∑y x x
  (1) 

where x is the input data vector, wi weight 
coefficients matrix vector, the bi bias norm and 
n is the number of the neurons in the hidden 
layer.  
 

Optimization objective function could be 
directly associated with y = f(x), in that case 
ANN is a direct interpolation of the 
optimization objective function that maps the 
search space [1-5]. That approach suffers from 
many disadvantages in many design 
parameters and multiobjective optimization. 
Benefits are not so significant due to complex 
trading and large data sets needed for that 
purpose. Here to train the ANN in that 
particular magnetic gear example was tested 
and trained over a FEM numerical model, 
where at the end the model is finally bypassed 
the trained ANN. First design optimization 
approach block scheme is demonstrated in 
Fig.4(a).  

 

 
Fig. 4. ANN for objective function interpolation (a) 

and optimization process control and 
parameters preselection (b).  

 
Second implemented design optimization 

approach employs the ANN as an optimization 
problem control and parameters preselection. 
Optimization control approach block scheme 
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is shown in Fig.4(b). ANN is trained over 
optimization parameters control during the 
ongoing optimization process. Gradient 
descent directed method data has been 
provided and used for ANN training, 
combinations of input design parameters are 
selected by the ANN and gradient reposition 
steep is also controlled by the ANN. 

We consider RBF - ANN with one internal 
hidden layer with 5 neurons, in the first layer 
we have one input (gradient of objective 
function) and three outputs at the third layer 
for the predicted values of: magnetic gear 
diameters, axial lengths and air-gaps. 
Preselected predicted values are then used and 
confirmed in the 3D FEM optimization model, 
as it is shown in Fig.4(b).  

ANN is implemented via a Matlab NNet 
toolbox.  

 

 
Fig. 5. ANN fit regression linearity.  

 
Magnetic model data fit after the trading is 

presented in Fig.5. Fig.6 and Fig.7, are 
representing the ANN training iterative results 
in 12 sequential epochs.  

 
DISCUSSION 

The two implemented here approaches are 
tested on axial magnetic gear design 
optimization problem.  

First one is with ANN for objective function 
problem interpolation. Second one employs the 
ANN as an optimization problem parameters 
preselection. In both cases RBF - ANNs are 
used. In this specific optimization application, 
we consider one hidden layer RBF – ANN. 
Second one implemented design optimization 
approach employs the ANN as an optimization 
problem control and parameters preselection. 
ANN is trained over optimization parameters 
control during the ongoing optimization process. 

Gradient descent directed method data has been 
provided and used for ANN training, 
combinations of input design parameters are 
selected by the ANN and gradient reposition 
steep is also controlled by the ANN.  

In first case under investigation the ANN is a 
direct interpolation of the optimization objective 
function that maps the search space. That 
approach suffers from many disadvantages in 
many design parameters and multiobjective 
optimization. Benefits are not so significant due 
to complex training and large data sets needed 
for that purpose. Here we consider three 
parameters convex problem with ANN with one 
internal hidden layer with 5 neurons, in the first 
layer we have three inputs (magnetic gear 
diameters, axial lengths and air-gaps) and one 
output at the third layer for the objective 
function. Estimated ANN residual RMS error 
after the dataset training is estimated below 10-9. 
Outside the training dataset but within constrain 
limits RMS drops to 10-2. Larger problems will 
need exponentially increasing sizes of ANNs, so 
this direct interpolation approach looks tapped 
for a direct inversion. But in future stochastic 
ANNs could bring light in the computational 
bottleneck for larger inverse problems. Also 
interesting direction is the complete bypass of 
the computational field problems and coupled 
field problems [5,6], where ANN interpolation 
theoretically must provide strong benefits, 
especially in cases with time-dependent 
problems with repeating global matrices and 
non-linarites with double skews. Not least such 
ANN interpolations approaches have a huge 
potential in the emerging field of 3D 
visualization and virtual reality where the real 
time processing and algorithm speed of reaction 
has an advantage over the accuracy. 

 

 
 

Fig. 6. Mean square error during training epochs.  
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However, in the seconds investigated 
optimization approach the considered ANN is 
again with one internal hidden layer with 5 
neurons, in the first layer we have one input 
(gradient of objective function) and three 
outputs at the third layer for the predicted 
values of magnetic gear design parameters. In 
that case the control function of the ANN is 
not limited by the number of optimization 
parameters. Even a small ANN could control a 
huge multi-parametric optimization models if 
trained properly. Such ANNs schemes could 
mimic stochastic search algorithms as 
evolutionary genetic algorithms, multi-agent 
particle swarms, etc. ANNs will just mimic 
effectively the stochastic search algorithm, 
which means that search process is iterative 
and the gain will come from the reduced 
number of iterations from better adaptive 
control strategy. 

 

 
Fig. 7. ANN training iterative results.  

 
CONCLUSION 

Magnetic gear optimization approach by a 
ANN controlled model has been presented. Two 
parallel approaches are implemented. First one is 
with radial basis function ANN used for 
objective function problem interpolation. Second 
one employs the ANN as an optimization 
problem parameters preselection. ANN 
interpolation model that employs, in a natural 
and effective way, an inversion algorithm 
providing a solution of the electromagnetic 
device design problem. Further development of 
this optimization model can propose an efficient 
general solution to the electromagnetic device 

design problem from the same complexity class. 
The interpolation ANN model and optimization 
ANN control are both applied to the magnetic 
gear design. The results obtained shows the 
effectiveness of the proposed optimization 
method with ANN. 
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