
 336
International Scientific Conference “UNITECH 2020” – Gabrovo

INTERNATIONAL SCIENTIFIC CONFERENCE

20-21 November 2020, GABROVO

UNIVERSITY EXAM TIMETABLING USING GENETIC ALGORITHMS

Ozan Akı
1

1
Trakya University

Abstract
Exam timetabling problems are one of the optimization problems and these are also known as NP-Hard problems. An exam

timetabling consist of different constraints and satisfactions from course timetabling. In university exams, one of the significant

difference from courses are exams can be done used multiple classrooms while courses use only one. In the exam timetabling, satisfying

classes are more important than course timetabling. The number of exams per day, distributing hard exams, optimizing classroom

usages are soft constraints but these are important as hard constraints. In this paper, solving an exam timetabling problem for

universities has been discussed and examined. Genetic algorithms have been used for the generation candidate solution. Results have

been discussed related to defined constraints.

Keywords: exam, timetable, genetic algorithm

INTRODUCTION

 Exam timetables are just another

optimization problem. These types of

optimization problems are classified as NP-

hard [1]. Solving by linear programming by

testing all possibilities takes excessive time

[2]. Exam time tables are similar to the course

time tables but some requirements differ. In

universities, course time tables must be done

before each season. In Turkey, there are

usually two semesters, fall and spring. Some

universities have an extra summer semester.

Course timetables are prepared two or three

times per each year. On the other hand,

depending on the number of exams in one

semester, a typical university in Turkey must

have to prepare a minimum of three exam

timetables per semester and a minimum of 6

exam timetables per year. Furthermore, exam

timetables have some additional complexities

from course timetables [1].

 Most of the exam timetables in universities

are generating manually because each

university or department has its unique

physical resources and requirements.

Generating exam timetables automatically can

help the staff that dedicated to making

timetables. Also, the resources of universities

can be used efficiently.

 There are many studies about generating

course timetables with different approaches.

But there are few papers specifically about

exam timetabling.

 Al-Hawari and et al. have been used a three-

phase integer linear programming (ILP)

approach for solving timetable problems [1]

Edis and et al. have been used two-phase

integer linear programming to solve exam

timetabling problems [3].

Huang and et al. have been proposed a new

Memetic algorithm for generating exam

timetables [4]. Burke and et al., and Soghier

and et al. have been evaluated an adaptive

selection of heuristics for improving exam

timetables [5, 6]. Mansour and et al. have been

used the scatter search technique for exam

timetabling [7]. Komar and et al., have been

used distributed evolutionary computation for

solving exam timetabling [8].

 This paper aims to generate real-world exam

timetables automatically using genetic

algorithms. Experiments have been performed

with real-world data and constraints for testing

algorithms’ performances. For evaluating the

generated exam timetable performance,

Trakya University Ipsala vocational school

exam tables that have been made by manually

are used as reference and comparison.

PROBLEM DESCRIPTION

 Exam timetabling differs from course

timetabling in many respects. An exam

 2020

 337
International Scientific Conference “UNITECH 2020” – Gabrovo

timetable consists of exams in timeslots such

as courses. Dependent on the number of

students of the exam, one or more classrooms

can be used for examination. Also,

examinators must be assigned to each

dedicated classroom of the exam. In vocational

schools, examinators are mostly lecturers. So,

lecturers can have two different roles in the

examination week. Assigning classrooms and

balancing workloads of observers are as

important as arranging exams in the timetable.

 An exam timetable has two types of

constraints. Hard constraints must have

fulfilled. A class's exams cannot be in the

same timeslot. There must be empty

classrooms in the timeslot that total capacities

meet the number of students. These are some

examples of hard constraints.

 Soft constraints improve the satisfaction of

the exam timetable. A balanced distribution of

class’s exams over days, preventing hard

exams arranged successively, spare timeslots

for lecturers and students, lecturer preferences

are some examples of soft constraints.

 When hard constraints are once met, soft

constraints will increase the satisfaction of the

timetable in respect of defined conditions [2].

 In this paper, hard constraints are defined as

follows:

 Exams of the same class cannot be in the

same timeslot

 A lecturer cannot have more than one

exam in the same timeslot unless there is a

combined exam.

 A lecturer cannot assign as an observer if

there is own exam in the same timeslot.

 An exam cannot be assigned to the

timeslot when there is no available

classroom to meet the number of students

in this exam.

Soft constraints are defined as follows:

 A balanced distribution of exams of

classes along exam days.

 Avoiding assigning hard exams on the

same day for any class.

 Selecting the fittest capacity of the

combination of classrooms (chose

classrooms that total capacity should

closer to the number of students)

 Distribute workloads of the observers

evenly.

 Try to maximize lecturers total

coefficiency for each timeslot

 Try to maximize classes total coefficiency

for each timeslot

The algorithm aims to fulfill the hard

constraints first and then maximize the overall

soft constraints’ score.

METHODOLOGY

Genetic Algorithms have been used to solve

optimization problems such as timetables.

Core elements of genetic algorithms are

genomes. Chromosomes are consist of genes

and have all information about any candidate

solution. A population consists of a certain

number of chromosomes. Genetic operators,

crossover, and mutation apply over to some

selected chromosomes from the population.

The new generation obtaining by adding new

modified chromosomes to the current

population. These steps recurring over and

over until reached the threshold level.

In this study, chromosome length is

determined by the number of exams. Each

genome is consists of a timeslot, a list of

classroom indices, and an observers indices

list for each classroom index. A section of the

exam chromosome is shown in figure 1.

Fig. 1. A section of an exam chromosome

In figure 1, ti is the timeslot index that

indicates the day and period in the timetable. ri

is classroom index in timeslot ti. timeslot

index ti is calculated from day d and period p

as shown by formula 1.

 (1)

In formula 1, Np is the number of periods

per day. By using this form of representation, a

1-dimensional chromosome has been obtained.

Thus, genetic operations and fitness

calculations on a chromosome have been

simplified. Recurred lists in each genome

seem to increase calculation iteration but inner

lists mostly will not have items more than a

few.

 338
International Scientific Conference “UNITECH 2020” – Gabrovo

The overall fitness value has been

calculated as weighted sums of fitnesses of

lecturers Lf, classes Cf, classrooms Rf, and

observers Of. Chromosome fitness value Kf is

calculating as formula 2.

 (2)

Lecturers, classes, classrooms, and

observers can have different weights in the

sum of fitness calculation dependent on the

importance of objectives.

Lecturers’ fitness values are calculating

from coefficient values for each timeslot

entered the database along with lecturers' data.

These coefficients are can vary between -1.0 to

1.0. These coefficients are indicated the

lecturers' happiness for each timeslot. Negative

values represent the ratio of unhappiness while

positives ones are happiness. Zero value

indicates the neutral or doesn’t care state. Lh

lecturer fitness value is calculating as formula 3.

(4)

In this formula, Lf is the lecturer fitness

value, Nts is the number of timeslots in the

exam table, Ltci is the lecturer’s happiness

coefficient value for the assigned exam in

timeslot i and has been shown in formula 5.

Xtpi is the coefficient values assigned exams

for timeslot I and has been shown in formula

6.

 (5)

 (6)

The fitness value of a class is dependent on

a balanced distribution of exams along days in

the exam timetable. The value of Ch is

calculating as in formula 7.

(7)

In formula 7, Nd is the number of days in

the exam timetable, Nx is the total number of

the exam of class, Xni is the number of exams

in the day i for class. Hcb is the best exam

arrangement value.

Classrooms’ fitness values are related to its

fullness rate and calculated as formula 8.

(8)

In this formula, Rf is a classroom fitness

value. Rtu is the number of used classrooms for

the exam. Nr is the total number of classrooms.

Ns is the number of students for the exam. Rcr

is the total capacity of assigned classrooms for

the exam.

Observers' fitness values depend on the

equality of workloads and are calculated by

formula 9.

(9)

In formula 9, Of is the fitness value of

observers. Ne is the number of the observer

(also it is the number of lecturers if all

lecturers are observers). Otp is the total number

of tasks. Otpi is the observer’s number of tasks.

The genetic algorithm flowchart is shown

in figure 2. By this flowchart, the initial

population is creating first. Created new

chromosomes always fulfill the hard

constraints thanks to the chromosome creation

algorithm prevents the violating of hard

constraints. Thus, the calculation of fitness

value represents only soft constraints’

fulfillment. The genetic algorithm tries to

minimize total fitness value Kh. The selection

of chromosomes from the population is based

on the elitism approach. Only chromosomes

that have the best fitness values are selecting

for the mating pool. Then doing crossover and

mutation genetic operations over mating pool

chromosomes. Then modified mating pool

chromosomes’ fitness values are calculating

for selection and generation new generation.

Only chromosomes that have better fitness

value from chromosomes in the population are

transferred to the new population. The

algorithm process begins again until reaching

 339
International Scientific Conference “UNITECH 2020” – Gabrovo

the threshold fitness value or maximum

iteration limit.

Fig. 2. Flowchart of overall genetic calculations

After reaching the fitness threshold value or

iteration limit, the chromosome that has the

best fitness value is selecting for the solution

and converted to the exam timetable then

saved as an HTML formatted file.

EXPERIMENTS

In the experimental phase of this study, all

of the genetic algorithm functionalities are

coded in Python. Software classes have been

used as data structures to manage data in

algorithms. Each of the lecturers, classes,

exams, classrooms have been storing within

individual objects with their related data.

These objects and object fields have been

shown in figure 3.

Fig. 3. Classes of data structures

All objects are created from stored text

databases automatically. All needed data has

been entered manually from a real-world exam

timetable had been used in Ipsala Vocational

School. The experimental timetable

information is shown in table 1.

Table. 1. Exam timetable information

Property Value

Number of exams 106

Number of lecturers 20

Number of classrooms 12

Number of classes 12

RESULTS

 Some test results with parametric variations

are shown in table 2.

Table. 2. Results with parametric variations
Experiments

1 2 3 4 5 6

Population

Size
30 30 30 40 60 100

Mating

Poll Size
10 10 10 20 20 50

Crossover

Rate (%)
1.89 5.66 11.32 1.89 1.89 1.89

Mutating

Rate (%)
0.94 1.89 3.77 0.94 0.94 0.94

Working

Duration
3:01 3:01 3:00 5:20 5:20 12:18

Fitness 0.180 0.180 0.277 0.178 0.180 0.179

In the first three experiments, population and

mating pool sizes are fixed while crossover

and mutation rates have been increased. In

experiments 4, 5, 6 crossover and mutation

rates are fixed while population and mating

pool sizes have been increased.

 340
International Scientific Conference “UNITECH 2020” – Gabrovo

By the limit of 500 iterations, the best fitness
value is about 0.180 has been obtained. When
the results are examined, it seems that
increasing rates of crossover and mutation
worsen fitness. Also, increasing the population
and mating pool sizes did not affect the fitness
value, but the duration of the study increased
proportionally. As a result of evaluating
experiment results, experiments 1, 2, 4, 6 have
the best fitness values. But when evaluating
for the working duration, experiments 1 and 2
have got minimum working durations.
 The fitness graph that has been drawing
during the calculating generations for
experiment 1 is shown in figure 4.

Fig. 4. Fitness graph of experiment 1

 There are two curves in figure 4. The upper
curve showing the mean fitness values in
population over generations. The lower curve
showing the best fitness values of the
population over generations. The gap between
curves shows the deviation between the mean
and best fitness value. The narrow gap as in
figure 4 means that all fitness values of
chromosomes in the population are not far
from the best chromosome fitness value.
 When the generated timetable is examined, it
seems that all lecturers’ happiness coefficients
have been fulfilled. Also, lecturers’ workloads as
observers for exams has been distributed
smoothly. There are only ±2 differences in
workloads between observers’ tasks. Classes’
exams distribution along days in the timetable
has not been good as expected. It was observed
that most of the classes had one spare day on the
timetable, while there is more than one exam on
the other days. Classroom fitnesses have been
mostly filled by 73% to 97% fullness rates. But
the number of usages of classrooms is
unbalanced. One classroom has been assigned
19 times but another one only one. It may be

considered to change the weight value of the
classroom in fitness calculation or to rearrange
the classroom fitness formula.

CONCLUSION

 Experiments are showing that an
automatically generated exam timetable with
real-world data is almost ready for usage by
some modification by hand. Also, these exam
timetables have been generated within a
relatively very short time such as under 5
minutes. With the improvement of the genetic
algorithm, it has been observed that it is possible
to obtain outputs very close to the manually
placed timeline.

REFERENCE

[1] Al‐ Hawari, F., et al., A practical
three‐ phase ILP approach for solving the
examination timetabling problem.
International Transactions in Operational
Research, 2020. 27(2): p. 924.

[2] Febrita, R.E. and W.F. Mahmudy. Modified
genetic algorithm for high school time-table
scheduling with fuzzy time window. in 2017
International Conference on Sustainable
Information Engineering and Technology
(SIET). 2017. IEEE.

[3] Rahime Sancar, E. and E. Emrah Bünyamin,
Gerçek bir sınav çizelgeleme problemi için iki
aşamalı çözüm yaklaşımı. A two-phase
solution approach for a real-life examination
timetabling problem, 2020. 25(1): p. 71-81.

[4] Huang, W., G. Yi, and S. He, Memetic
algorithm and its application to the
arrangement of exam timetable. Statistics,
Optimization and Information Computing,
2016. 4(2): p. 147-153.

[5] Burke, E., R. Qu, and A. Soghier, Adaptive
selection of heuristics for improving exam
timetables. Annals of Operations Research,
2014. 218(1): p. 129-145.

[6] Soghier, A. and R. Qu, Adaptive selection of
heuristics for assigning time slots and rooms
in exam timetables. Applied Intelligence: The
International Journal of Artificial Intelligence,
Neural Networks, and Complex Problem-
Solving Technologies, 2013. 39(2): p. 438.

[7] Mansour, N., V. Isahakian, and I. Ghalayini,
Scatter search technique for exam
timetabling. Applied Intelligence, 2011. 34(2):
p. 299.

[8] Komar, M., D. Grbic, and M. Cupic, Solving
exam timetabling using distributed
evolutionary computation. 2011. p. 301-306.

