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Abstract 
Exam timetabling problems are one of the optimization problems and these are also known as NP-Hard problems. An exam 

timetabling consist of different constraints and satisfactions from course timetabling. In university exams, one of the significant 

difference from courses are exams can be done used multiple classrooms while courses use only one. In the exam timetabling, satisfying 

classes are more important than course timetabling. The number of exams per day, distributing hard exams, optimizing classroom 

usages are soft constraints but these are important as hard constraints. In this paper, solving an exam timetabling problem for 

universities has been discussed and examined. Genetic algorithms have been used for the generation candidate solution. Results have 

been discussed related to defined constraints. 
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INTRODUCTION 

    Exam timetables are just another 

optimization problem. These types of 

optimization problems are classified as NP-

hard [1]. Solving by linear programming by 

testing all possibilities takes excessive time 

[2]. Exam time tables are similar to the course 

time tables but some requirements differ. In 

universities, course time tables must be done 

before each season. In Turkey, there are 

usually two semesters, fall and spring. Some 

universities have an extra summer semester. 

Course timetables are prepared two or three 

times per each year. On the other hand, 

depending on the number of exams in one 

semester, a typical university in Turkey must 

have to prepare a minimum of three exam 

timetables per semester and a minimum of 6 

exam timetables per year. Furthermore, exam 

timetables have some additional complexities 

from course timetables [1]. 

    Most of the exam timetables in universities 

are generating manually because each 

university or department has its unique 

physical resources and requirements. 

Generating exam timetables automatically can 

help the staff that dedicated to making 

timetables. Also, the resources of universities 

can be used efficiently. 

    There are many studies about generating 

course timetables with different approaches. 

But there are few papers specifically about 

exam timetabling.  

    Al-Hawari and et al. have been used a three-

phase integer linear programming (ILP) 

approach for solving timetable problems [1]  

Edis and et al. have been used two-phase 

integer linear programming to solve exam 

timetabling problems [3].  

Huang and et al. have been proposed a new 

Memetic algorithm for generating exam 

timetables [4]. Burke and et al., and Soghier 

and et al. have been evaluated an adaptive 

selection of heuristics for improving exam 

timetables [5, 6]. Mansour and et al. have been 

used the scatter search technique for exam 

timetabling [7]. Komar and et al., have been 

used distributed evolutionary computation for 

solving exam timetabling [8]. 

    This paper aims to generate real-world exam 

timetables automatically using genetic 

algorithms. Experiments have been performed 

with real-world data and constraints for testing 

algorithms’ performances. For evaluating the 

generated exam timetable performance, 

Trakya University Ipsala vocational school 

exam tables that have been made by manually 

are used as reference and comparison.  

PROBLEM DESCRIPTION 

    Exam timetabling differs from course 

timetabling in many respects. An exam 
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timetable consists of exams in timeslots such 

as courses. Dependent on the number of 

students of the exam, one or more classrooms 

can be used for examination. Also, 

examinators must be assigned to each 

dedicated classroom of the exam. In vocational 

schools, examinators are mostly lecturers. So, 

lecturers can have two different roles in the 

examination week. Assigning classrooms and 

balancing workloads of observers are as 

important as arranging exams in the timetable. 

    An exam timetable has two types of 

constraints. Hard constraints must have 

fulfilled. A class's exams cannot be in the 

same timeslot. There must be empty 

classrooms in the timeslot that total capacities 

meet the number of students. These are some 

examples of hard constraints. 

    Soft constraints improve the satisfaction of 

the exam timetable. A balanced distribution of 

class’s exams over days, preventing hard 

exams arranged successively, spare timeslots 

for lecturers and students, lecturer preferences 

are some examples of soft constraints. 

    When hard constraints are once met, soft 

constraints will increase the satisfaction of the 

timetable in respect of defined conditions [2]. 

    In this paper, hard constraints are defined as 

follows: 

 Exams of the same class cannot be in the

same timeslot

 A lecturer cannot have more than one

exam in the same timeslot unless there is a

combined exam.

 A lecturer cannot assign as an observer if

there is own exam in the same timeslot.

 An exam cannot be assigned to the

timeslot when there is no available

classroom to meet the number of students

in this exam.

Soft constraints are defined as follows: 

 A balanced distribution of exams of

classes along exam days.

 Avoiding assigning hard exams on the

same day for any class.

 Selecting the fittest capacity of the

combination of classrooms (chose

classrooms that total capacity should

closer to the number of students)

 Distribute workloads of the observers

evenly.

 Try to maximize lecturers total 

coefficiency for each timeslot

 Try to maximize classes total coefficiency

for each timeslot

The algorithm aims to fulfill the hard 

constraints first and then maximize the overall 

soft constraints’ score. 

METHODOLOGY 

Genetic Algorithms have been used to solve 

optimization problems such as timetables. 

Core elements of genetic algorithms are 

genomes. Chromosomes are consist of genes 

and have all information about any candidate 

solution. A population consists of a certain 

number of chromosomes.  Genetic operators, 

crossover, and mutation apply over to some 

selected chromosomes from the population. 

The new generation obtaining by adding new 

modified chromosomes to the current 

population. These steps recurring over and 

over until reached the threshold level. 

In this study, chromosome length is 

determined by the number of exams. Each 

genome is consists of a timeslot, a list of 

classroom indices, and an observers indices 

list for each classroom index. A section of the 

exam chromosome is shown in figure 1. 

Fig. 1. A section of an exam chromosome 

In figure 1, ti is the timeslot index that 

indicates the day and period in the timetable. ri 

is classroom index in timeslot ti. timeslot 

index ti is calculated from day d and period p 

as shown by formula 1. 

          (1) 

In formula 1, Np is the number of periods 

per day. By using this form of representation, a 

1-dimensional chromosome has been obtained. 

Thus, genetic operations and fitness 

calculations on a chromosome have been 

simplified. Recurred lists in each genome 

seem to increase calculation iteration but inner 

lists mostly will not have items more than a 

few. 
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The overall fitness value has been 

calculated as weighted sums of fitnesses of 

lecturers Lf, classes Cf, classrooms Rf, and 

observers Of. Chromosome fitness value Kf is 

calculating as formula 2.  

                      (2) 

Lecturers, classes, classrooms, and 

observers can have different weights in the 

sum of fitness calculation dependent on the 

importance of objectives. 

Lecturers’ fitness values are calculating 

from coefficient values for each timeslot 

entered the database along with lecturers' data. 

These coefficients are can vary between -1.0 to 

1.0. These coefficients are indicated the 

lecturers' happiness for each timeslot. Negative 

values represent the ratio of unhappiness while 

positives ones are happiness. Zero value 

indicates the neutral or doesn’t care state. Lh 

lecturer fitness value is calculating as formula 3. 

     
     

   
   

     
   
   

(4) 

In this formula, Lf is the lecturer fitness 

value, Nts is the number of timeslots in the 

exam table, Ltci is the lecturer’s happiness 

coefficient value for the assigned exam in 

timeslot i and has been shown in formula 5. 

Xtpi is the coefficient values assigned exams 

for timeslot I and has been shown in formula 

6. 

      
           

        
 (5) 

      
           

        
 (6) 

The fitness value of a class is dependent on 

a balanced distribution of exams along days in 

the exam timetable. The value of Ch is 

calculating as in formula 7.  

      
   

      
  

  
   

   

(7) 

In formula 7, Nd is the number of days in 

the exam timetable, Nx is the total number of 

the exam of class, Xni is the number of exams 

in the day i for class. Hcb is the best exam 

arrangement value. 

Classrooms’ fitness values are related to its 

fullness rate and calculated as formula 8. 

   
   

  
   

  

    
  
   

(8) 

In this formula, Rf is a classroom fitness 

value. Rtu is the number of used classrooms for 

the exam. Nr is the total number of classrooms. 

Ns is the number of students for the exam. Rcr 

is the total capacity of assigned classrooms for 

the exam. 

Observers' fitness values depend on the 

equality of workloads and are calculated by 

formula 9. 

   
 

   

  

  
        

   

(9) 

In formula 9, Of is the fitness value of 

observers. Ne is the number of the observer 

(also it is the number of lecturers if all 

lecturers are observers). Otp is the total number 

of tasks. Otpi is the observer’s number of tasks.  

The genetic algorithm flowchart is shown 

in figure 2. By this flowchart, the initial 

population is creating first. Created new 

chromosomes always fulfill the hard 

constraints thanks to the chromosome creation 

algorithm prevents the violating of hard 

constraints. Thus, the calculation of fitness 

value represents only soft constraints’ 

fulfillment. The genetic algorithm tries to 

minimize total fitness value Kh. The selection 

of chromosomes from the population is based 

on the elitism approach. Only chromosomes 

that have the best fitness values are selecting 

for the mating pool. Then doing crossover and 

mutation genetic operations over mating pool 

chromosomes. Then modified mating pool 

chromosomes’ fitness values are calculating 

for selection and generation new generation. 

Only chromosomes that have better fitness 

value from chromosomes in the population are 

transferred to the new population. The 

algorithm process begins again until reaching 
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the threshold fitness value or maximum 

iteration limit. 

Fig. 2. Flowchart of overall genetic calculations 

After reaching the fitness threshold value or 

iteration limit, the chromosome that has the 

best fitness value is selecting for the solution 

and converted to the exam timetable then 

saved as an HTML formatted file. 

EXPERIMENTS 

In the experimental phase of this study, all 

of the genetic algorithm functionalities are 

coded in Python. Software classes have been 

used as data structures to manage data in 

algorithms. Each of the lecturers, classes, 

exams, classrooms have been storing within 

individual objects with their related data. 

These objects and object fields have been 

shown in figure 3. 

Fig. 3. Classes of data structures 

All objects are created from stored text 

databases automatically. All needed data has 

been entered manually from a real-world exam 

timetable had been used in Ipsala Vocational 

School. The experimental timetable 

information is shown in table 1.  

Table. 1. Exam timetable information 

Property Value 

Number of exams 106 

Number of lecturers 20 

Number of classrooms 12 

Number of classes 12 

RESULTS 

    Some test results with parametric variations 

are shown in table 2.  

Table. 2. Results with parametric variations 
Experiments 

1 2 3 4 5 6 

Population 

Size 
30 30 30 40 60 100 

Mating 

Poll Size 
10 10 10 20 20 50 

Crossover 

Rate (%) 
1.89 5.66 11.32 1.89 1.89 1.89 

Mutating 

Rate (%) 
0.94 1.89 3.77 0.94 0.94 0.94 

Working 

Duration 
3:01 3:01 3:00 5:20 5:20 12:18 

Fitness 0.180 0.180 0.277 0.178 0.180 0.179 

In the first three experiments, population and 

mating pool sizes are fixed while crossover 

and mutation rates have been increased. In 

experiments 4, 5, 6 crossover and mutation 

rates are fixed while population and mating 

pool sizes have been increased. 



  340
International Scientific Conference “UNITECH 2020” – Gabrovo 

By the limit of 500 iterations, the best fitness 
value is about 0.180 has been obtained. When 
the results are examined, it seems that 
increasing rates of crossover and mutation 
worsen fitness. Also, increasing the population 
and mating pool sizes did not affect the fitness 
value, but the duration of the study increased 
proportionally. As a result of evaluating 
experiment results, experiments 1, 2, 4, 6 have 
the best fitness values. But when evaluating 
for the working duration, experiments 1 and 2 
have got minimum working durations.  
   The fitness graph that has been drawing 
during the calculating generations for 
experiment 1 is shown in figure 4. 

Fig. 4. Fitness graph of experiment 1 

    There are two curves in figure 4. The upper 
curve showing the mean fitness values in 
population over generations. The lower curve 
showing the best fitness values of the 
population over generations. The gap between 
curves shows the deviation between the mean 
and best fitness value. The narrow gap as in 
figure 4 means that all fitness values of 
chromosomes in the population are not far 
from the best chromosome fitness value.  
   When the generated timetable is examined, it 
seems that all lecturers’ happiness coefficients 
have been fulfilled. Also, lecturers’ workloads as 
observers for exams has been distributed 
smoothly. There are only ±2 differences in 
workloads between observers’ tasks. Classes’ 
exams distribution along days in the timetable 
has not been good as expected. It was observed 
that most of the classes had one spare day on the 
timetable, while there is more than one exam on 
the other days. Classroom fitnesses have been 
mostly filled by 73% to 97% fullness rates. But 
the number of usages of classrooms is 
unbalanced. One classroom has been assigned 
19 times but another one only one. It may be 

considered to change the weight value of the 
classroom in fitness calculation or to rearrange 
the classroom fitness formula. 

CONCLUSION 

    Experiments are showing that an 
automatically generated exam timetable with 
real-world data is almost ready for usage by 
some modification by hand. Also, these exam 
timetables have been generated within a 
relatively very short time such as under 5 
minutes. With the improvement of the genetic 
algorithm, it has been observed that it is possible 
to obtain outputs very close to the manually 
placed timeline. 
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