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Abstract 

In this study, the properties of ideal and non-ideal contacts are investigated under nonlinear regime and 

inhomogeneous conditions. In the absence of an external magnetic field for gate and etching defined devices, the three-

dimensional Poisson equation solves self-consistently for the given material parameters and the potential profile of the 

structure is obtained. In the presence of a vertical magnetic field, the spatial distribution of incompressible strips is 

determined taking into account the electron-electron interaction within the Thomas-Fermi screening theory. Using a 

local version of the Ohm's law, the current distribution is calculated with a corresponding conductivity model. It is 

observed that the incompressible strips can be on the edge or at the center of bulk considering different magnetic fields. 
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INTRODUCTION 

    Current and probe contacts are essential 

ingredients of many experimental setups 

concerning charge transport at low 

dimensional systems. The recent experimental 

investigations [1-5] show that, the charge 

distribution in the close vicinity of the contacts 

present inhomogeneties due to annealing 

processes. Such a result, clarifies that contacts 

cannot be taken as ideal. However, the state of 

art contacts are still perfectly Ohmic with a 

finite, nevertheless small, contact resistance.  

FORMULATION OF THE PROBLEM 

The main purpose of this letter is to obtain 

the spatial distribution of the potential, density 

and current within the Hall bar geometry in the 

presence of metal contacts. However, to obtain 

such quantities, one has to solve Poisson and 

Schroedinger equations self-consistently first, 

and then obtain the current distribution via 

solving the local Ohm’s law. The most 

challenging part of this scheme is to obtain the 

current distribution considering the non-linear 

response regime, which essentially requires 

that the potential distribution is affected by the 

imposed high current. Hence, the potential and 

density profile profiles should be re-calculated 

while a current is driven.  

We first start with an electrostatic 

equilibrium distribution, where fixed charges 

(the donors) and the boundary conditions are 

given. Assuming charge neutrality, the Fermi 

energy is fixed by the number of donors and in 

the absence of external magnetic field and at 

vanishing temperature one can obtain the 

electron density from the Poisson equation 

utilizing the given boundary conditions 

imposing that the potential is periodic. Fig. 1 

presents the numerically obtained confinement 

potential Here we superimposed an impurity 

potential which simulates the inhomogeneous 

distribution of donors, stemming from the 

experimental findings.  

The electrons are filled up to Fermi Energy 

at zero temperature via Eqn. 1, and hence the 

initial density distribution is obtained via; 

       
    

  
. (1) 

 Using this density profile and equipped 

with the Landau quantization, one gathers the 

information on the local filling factors which 

  2020 



   462
International Scientific Conference “UNITECH 2019” – Gabrovo 

essentially connects the magnetic field to the 

local densities by; 

          
         ,  (2) 

with the magnetic length 

        . Once the local filling factors are 

known, using the well justified local Ohm’s 

law one can obtain the local current 

distribution by; 

                             ,  (3) 

where       is the position-dependent 

electrochemical potential,       is a two by two 

tensor describing the local conductivities, and 

      is the local current density together with 

the local electric field        . 

 In the presence of an external magnetic 

field in z-direction and a current in y-direction 

results in a potential generated in x-direction, 

namely the Hall potential. If the Hall potential 

generated is much smaller than the screened 

potential (VH << VScr) one can readily obtain 

the self-consistent current distribution. 

However, once the imposed current (i.e. the 

potential difference between source and drain) 

becomes comparable with the screened 

potential on has to solve the above equations 

self-consistently. 

In our work, we map a Hall bar on a 

128x128 grid and solve the potential-density 

and density current equations self-consistently 

using a 3D fast Fourier transformation 

numerical method. The details of our scheme 

can be found elsewhere [5].  

RESULTS AND DISCUSSION 

A Hall bar geometry was designed to create 

2DES 150 nm below the surface, where 

surface potential is pinned to the mid-gap of 

GaAs (-0.75 V). 

The narrow Hall bar is defined by etching 

at the sides having a depth similar to 65 nm. 

The contacts are simulated by metallic regions 

that reside 48 nm below the surface and are 

kept at -0.5 V. In previous studies we 

calculated the current distribution across the 

Hall bar, where current amplitude is limited to 

the linear response regime [4]. Here, we 

extended the study to the non-linear response 

regime, where the external current modifies 

the electronic charge distribution considerably.  

The non-ideal contacts are described by 

density fluctuations near the transition region, 

as indicated by experiments [1-3] which 

essentially influence the current distribution 

drastically. In Fig.2 shows the spatial 

distributions of electron (a) and current 

densities (b) considering different impurity 

centers for the same magnetic field value in an 

inhomogeneous condition. The magnetic field 

is set to a value where only two 

incompressible stripes reside along the Hall 

bar and the dissipative current is transmitted 

via the hot spots formed at the corners of the 

system. Such a magnetic field value 

corresponds to an interval at the lower edge of 

the quantum Hall plateau, which is essentially 

observed at the local scanning probe 

experiments by several groups. This regime is 

also well described by the Landaurer-Buettiker 

formalisim, however, in that scheme the 

current is supposed to be dissipationless.   

Fig.3 presents a case where the bulk of the 

sample becomes incompressible, hence the 

current is confined to the center of the sample. 

This magnetic field value corresponds to an 

interval close to the end of the quantum Hall 

plateau (high magnetic field end). This regime 

is also well described by the localization 

theory of the quantum Hall effect. Note that, in 

our calculations we did not use and arguments 

of the localization theory. The only role of the 

impurities is to modify the confinement 

potential together with defining the local 

conductivities.  

As a result of our calculations we can 

clearly state that the impurities stemming from 

the inhomogeneous distribution of the donors 

yield potential fluctuations, which are small 

compare to the homogeneous donor 

distribution. Hence the main mechanism 

defining current distribution comes from the 
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non-linear effect of the developed Hall 

potential, whereas the properties of the local 

conductivities are still impurity dependent.  

Fig. 1. Spatial distribution of the confinement 

potential considering 300 impuritty centers 

distributed randomly at the Hall bar. 

Fig. 2. Spatial distributions of the local filling 

factors  (x,y) (a), together with the current density 

(c) as a function of lateral coordinates. Color scale 

denotes density gradient, whereas arrows (red) 

present the amplitude and direction of the imposed 

excess current. We distribute (a) 150 and (b) 300 

number of impurities in the bulk.  

Fig. 3. Spatial distributions of the local filling 

factors  (x,y) (a), together with the current density 

(b) as a function of lateral coordinates. Color 

scale denotes density gradient, whereas arrows 

(red) present the amplitude and direction of the 

imposed excess current. We distribute (a) 150 and 

(b) 300 number of impurties in the bulk. The 

calculations are performed same as Fig 2. 

CONCLUSION 

It is seen that the inhomogeneous condition 

causes the change of electron distribution 

along the Hall bar. This affects the spatial 

distribution of the current density. In addition, 

a phenomenological model is presented to 

discuss the inhomogeneous condition. It is 

believed that efforts will contribute to the 

understanding of ideal and non-ideal contacts, 

especially in the quantum hall regime. 
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