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Abstract 

Various elliptic boundary value problems have been used for mathematical models of many engineering problems. 

Some applied problems require the domain of interest to be divided into two or more separate subdomains, which are 

triangulated independently. On the other hand, mixed finite element meshes have been used to solve partial differential 

equations in curved domains. In this case, hexahedral finite elements have been used in the interior of the domain and 

curved tetrahedral elements have been located in the boundary layer. Additionally, mixed meshes with transitional 

elements are necessary for the h-p version of the finite element method. Therefore, hybrid meshes have been objects of 

great interest in the last decades. There are two major requirements that we have to satisfy creating hybrid finite 

element meshes. The first one is the whole triangulation of the domain of interest to be conforming. On the other hand, 

we need a stable refinement strategy with as small as a possible number of congruence classes, the lowest measure of 

degeneracy, and a simple refinement tree. Usually, the pyramidal elements have been used for transitional elements in 

the interface subdomains. But the homogenous triangulations based on pyramidal elements can be successfully applied 

for solving elliptic partial differential equations. This paper is devoted to refinement strategies for pyramidal meshes. 

Several pyramidal elements are tested and a case of instability is demonstrated. 

Keywords: hybrid finite element meshes, cubic pyramidal elements, stable refinement strategy, refinement tree, 

measure of degeneracy. 

INTRODUCTION 

    The three-dimensional hybrid meshes have 

been widely used by a lot of researchers in the 

last decades [1,2,3]. Several papers deal with 

mixed three-dimensional meshes [4,5,6]. But 

just a few papers are devoted to the properties 

of cubic pyramidal elements [7]. Unlike the 

three-dimensional case in the four-

dimensional one, the cubic pyramids cannot 

be coupled conformingly with simplicial 

elements since the lateral facets of any cubic 

pyramid are square pyramids. The latter 

means that the coupling between tesseract 

meshes and simplicial partitions needs the 

development of new elements, which have not 

been in use up to now. Despite this, the cubic 

pyramidal elements are necessary when 

tesseract dominant meshes have to be 

constructed. In this case, the pyramidal 

elements are located in the boundary layer. 

The optimal hybrid meshes regarding the wide 

spectrum of engineering applications are 

provided with: 

 conforming coupling of the adjacent

elements;

 stability of the sequence of successive

hierarchical triangulations;

 as small as possible degeneracy

measure for the sequence of successive

hierarchical triangulations;

 as small as possible congruence

classes.

Definition 1 Each  -dimensional hypercube 

can be divided into    (    -hypercubic 

pyramids. We call these pyramids canonical. 

Definition 2 A pyramid with an identical 

length of all edges is said to be super regular.  

We define the class      of the four-

dimensional super regular pyramids by  

                                        
                                       

  2020 
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Definition 3 Let            be four 

linearly independent vectors. The sum 

       

 

   

               

is called a four-dimensional parallelotope. 

The parallelotope is straight if the vectors    

are mutually perpendicular.  
Further, we present the parallelotope   by   

                    
Naturally, the following questions arise: 

 How to refine the pyramidal elements?

 Are the proposed refinement strategies

stable?

This paper deals with answers to these 

questions. We present a refinement strategy 

concerning the cubic pyramidal meshes and 

discuss important cases of stability of the 

partition method. The proposed method is 

optimal for all canonical domains [8] since the 

cubic canonical pyramid is super regular. This 

phenomenon is only valid in the four-

dimensional case [9]. We illustrate by an 

example that in the general case the proposed 

partition method is unstable. The results are 

illustrated by refinement trees and measures of 

degeneracies.  

STABILITY OF PYRAMIDAL MESH 

SUCCESSIVE REFINEMENTS   

In this section, we consider various pyramidal 

meshes designed to triangulate certain 

polytopes. Let  

               
be a cubic pyramid and                 be 

the nodes in the middle of the edges as 

follows:  
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The section is devoted to the partitioning 

operator  

                              
                   

                                        
                                        
                                        
                                        
                                        
                                        
                                        
                                        

                                            
                               
                             
                              
                             
                             
                              
                              
                             
                              
                              
                              
                               
                              
                               
                              
                               
                              

                                 
The refinement strategy related to the partition 

operator   is a generalization of the 

subdivision procedure described by Ainsworth 

and Fu [10]. Here, we emphasize the fact that 

the wedges play the role of the auxiliary 

tetrahedra in the three-dimensional case. The 

operator   divides any cubic pyramid into ten 

pyramids and eighteen wedges. The wedges in 

the four-dimensional cases are bipentatopes. 

On the next level, we refine each wedge 

               
 into wedges by the following subdivision 

operator 
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where: 
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The superposition       can be used for 

partitioning of an arbitrary parallelotope and of 

course for subdivision of any canonical 

domain.  

Fig. 1. The refinement tree generated by    . 

The class      has been analyzed by 

Petrov et al. in [9]. Since each tesseract can be 

divided into eight super regular pyramids, 

these elements are applicable for triangulating 

canonical domains. The elements of the class 

     are provided with the optimal two-level 

refinement tree and the optimal number of 

congruence classes in the four-dimensional 

case [9]. Some authors have been used the 

cubic pyramid  

                       

                                
                                
                                

                            
for the reference element. The pyramid    has 

real advantages with respect to the symmetry 

groups related to quadrature formulae. 

Unfortunately, this pyramid is regular but not 

super regular. The successive applications of 

the operator   on the pyramidal elements from 

the class    generate a five-level refinement 

tree and four congruence classes, see Figure 1. 

This result is true for all regular pyramids, 

which do not belong to the class     .  
Let the parallelotope 

                   

satisfies 
    

    
 

    

    
 (1) 

where           is a permutation of the 

numbers         and     is the Euclidean norm 

in   . Then the number of classes of 

similarity grows up as it is shown in Figure 2. 

We illustrate the results in Figure 2 with the 

next example. 

Example 1 In this example, we 

consider the parallelotope 

                             

                            

where   is Euler's number and   is the golden 

ratio. Obviously,    satisfies the negation (1). 

The parallelotope   is divided into eight 

pyramids from the class       where 

                              

                                         

                             

                   
 

 
 
 

 
 
  

 
     

The results for the degeneracy measure in the 

first four levels are presented in Table 1, Table 

2, and Table 3 

Pyr       

2.55421 3.69252 4.05123 4.12243 

Table 1 The degeneracy measure for the cubic 

pyramid    and the first three wedge successors.  
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6.92876 8.57064 8.92648 8.07537 

Table 2 The degeneracy measure for the next four 

wedge successors.  

             

8.22481 9.12830  9.52352 10.1834 10.4365 

Table 3 The degeneracy measure for the last five 

wedge successors.  

Let    be the initial conforming triangulation 

of the parallelotope    by eight cubic 

pyramidal elements and               
are the triangulations in the next levels. By 

applying the results in Table 1, Table 2, Table 

3, and the refinement tree in Figure 2, we have  

                                 
                                

Moreover, 

                    
                     

where       is the number of the congruence 

classes in the triangulation   . These results 

indicate that   generates an unstable sequence 

     of successive triangulations. 

CONCLUSION 

The four-dimensional hybrid meshes are the 

object of interest in this paper. The paper 

describes a partition method, which is optimal 

concerning the number of congruence classes 

for all canonical domains. The partition 

method remains stable for all regular 

pyramidal elements. The simplest refinement 

tree is obtained in the case of canonical 

domains. The proposed refinement strategy is 

tested on the parallelotope    satisfying the 

condition (1). The refinement of    is a critical 

example of the instability of the partitioning 

operator   in the general case. The latter 

means that the interface subdomain should be 

canonical or domain, which can be 

triangulated by regular pyramids at least. Such 

a requirement is not very restrictive from the 

computational point of view.  

Fig. 2. The refinement tree generated by the operator   on a parallelotope satisfying the condition (1). 
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