
International Scientific Conference “UNITECH 2019” – Gabrovo 345

INTERNATIONAL SCIENTIFIC CONFERENCE
15-16 November 2019, GABROVO

PROCESS MODELING IN THE LINUX OPERATING SYSTEM

Valentina Kukenska1, Matyo Dinev1, Petar Minev1, Ilian Varbov1

1Technical University of Gabrovo

Abstract
This paper focuses on the processes in the LINUX operating system. It looks at their possible states. The study

proposes a probability analytical model based on Markov chains. The model can be used to define the state of a given
process in a specific moment of time, and to evaluate the probability of the process entering a certain state.

Keywords: Process, Linux, modeling, probability analytical model, General Purpose Simulation System (GPSS)

1. INTRODUCTION
Different operating systems use different

concepts: job, task, process. The term process
was first used in the MIT MULTICS operating
system of MIT in the 1960s and dominates
today's operating systems. The shortest
definition of a process is a program in the
course of its implementation.

Modern computer systems can perform
multiple processes simultaneously. It is
accepted that this parallelism is called
multiprogramming. Its purpose is more
efficient use of the resources of the computer
system. There are many processes at the same
time, and the central processor (CPU) is only
one and can perform only one of these
processes at any one time. This process is
running. The other processes are in some other
state.

This paper focuses on the state of the
LINUX operating system processes. A
probabilistic analytical model based on
Markov chains is proposed. It allows you to
determine the probability of a process entering
a certain state.

2. STATE OF THE PROCESSES IN
LINUX

The LINUX processes can be found in one
of the states (1 ÷ 6) represented by the state
diagram of Fig. 1.

Fig. 1. Diagram of process states

1. Created. This is the initial state in which the
process enters the system. It is a transient state
of the process. It is almost created but not yet
fully operational.
2. Ready in memory. The process is ready for
execution and is in the memory.
3. Running in kernel mode. The process is
executed in kernel mode, with the CPU
executing commands from the kernel.
4. Running in user mode. The CPU executes
commands from the process related user
program.
5. Blocked in memory. The process awaits the
occurrence of an event and is in the memory.
6. Completion (zombie). This is the final state
of each process.

As shown in Figure 1, the execution state is
split into two: execution in kernel mode and
execution in user mode. When the process is in
a state of execution in user mode, user

exit()
fork()

Created
Running in
user mode

Ready in
memory

Zombie

wait(), read(),
write()

Blocked in
memory

Running in
kernel mode

 2019

International Scientific Conference “UNITECH 2019” – Gabrovo 346

instructions are executed. In the kernel mode
execution state, kernel instructions are
performed in the context of the current
process. The process can not directly go from
user mode to blocking, standby, or completion.
Such transitions are only possible through the
"running in kernel mode" intermediate state. It
is not possible to switch from "ready in
memory" directly to "execution in user mode".

3. ANALYTICAL MODEL

Each process from its creation to its
completion passes through different states
(Figure 1). Process states are a finite number,
but transition from one state to another
changes over time and can be seen as a
random process with discrete states. This
process can be presented with a graph of
states. Each state is marked with a circle, and
any possible transition from state to arrow
state.

Each possible sequence of process states
forms a chain. Since the number of states is
limited, the chain is final. Status transitions in
state are performed at unknown time points,
therefore the chain has a continuous time.

Let us present with a graph the state of the
processes in the LINUX OS (Fig. 2).

Fig. 2. Graph of the process states

We assume that the event S1(t) corresponds
to the process creation S2(t) - the state of
ready, S3(t) - of the state performed in the
kernel mode, S4(t) - the state in the user mode,
S5(t) - the state blocked and S6(t) - of the
completed process.

Every process is always in one of the states
at a time. Therefore, only one of the events
S(t) = Si, (i = 1, 2, ..., n) occurs at any moment

of time. If pi(t) indicates the probability of the
process being in the Si state, the normative
condition (1)

∑ 𝑝𝑖𝑛
𝑖=1 (𝑡) (1)

For every two time points, it is likely that
the process will go into another state, as well
as maintain its current state. These
probabilities can be considered conditional.
The initial condition of the process is set with
the vector of the initial probability distribution
of the states (2):
P(0)= |p1(0), p2(0), … , pn(0)| = |pi(0)|1×n (2)

The vector P(0) can be set in advance. It
can also be occasional for a given time.

The state of the process after a number of
times of change of time can be presented as a
distribution of the probabilities of the states
(3):
p(k)= |p1(k), p2(k), … , pn(k)| = |pi(k)|1×n, (3)

Where k=1,2,3,... and 0≤pi(k)≤1. The
transition probabilities Pij(k) for passing the
process from state Si to state Sj are set with an
index matrix of transient states P=|Pij(k)|n×n,
i,j=1,2, … , n.

With a given vector of the initial probability
distribution of states P(0) and a known matrix
of transition probabilities P, the probability
distribution vector of the states p(k) for each
step k can be determined.

If before step k, i.e. in the (k-1) step the
process is probable pi(k-1) in the Si state, then
the probability that after the step k is in the
state Sj is determined by the full probability
formula (4):

𝑝𝑗(𝑘) = ∑ 𝑝𝑖(𝑘 − 1).𝑝𝑖𝑗𝑛
𝑖=1 (4)

where j = 1,2, ..., n, and pi(k-1) are the
probabilities of the hypotheses for conditions
Si (i = 1,2, ..., n), and Pij(i=1,2, …., n) are the
probability probabilities given in j - pillar of
the matrix P.
The analytical model of the process can be
presented with the following equations and
dependencies:

(3)
If the probability matrix of the transient

states is known, it is possible to determine the

S1

S2

S4

S3

S5

S6

P1

P3

P4

P5

P12
P23

P32

P52

P35

P36 P34 P43

P2

International Scientific Conference “UNITECH 2019” – Gabrovo 347

probabilities of the process incident in each of
the possible Si states.

If the probability matrix of the transient
states is:

P =

⎣
⎢
⎢
⎢
⎡
0,1 0,9 0 0 0
0 0,8 0,2 0 0

0,1 0,2 0,3 0,3 0,1
0 0 0,4 0,6 0
0 0,3 0 0 0,7⎦

⎥
⎥
⎥
⎤

the following result is obtained: P1=0,02;
P2=0,48; P3=0,24; P4=0,18 and P5=0,08.

4. MODEL SIMULATION

The proposed model is described in
process-oriented language and simulated with
the General Purpose Simulation System
(GPSS).
; MS/1/
 GENERATE 90
PS1 QUEUE QSS1
 SEIZE SS1
 DEPART QSS1
 ADVANCE 1
 RELEASE SS1
 TRANSFER .50,,PS1
PS2 QUEUE QSS2
 SEIZE SS2
 DEPART QSS2
 ADVANCE 1
 RELEASE SS2
 TRANSFER .50,,PS2
PS3 QUEUE QSS3
 SEIZE SS3
 DEPART QSS3
 ADVANCE 1
 RELEASE SS3
 TRANSFER .17,,PS1
 TRANSFER .17,,PS2
 TRANSFER .15,,PS3
 TRANSFER .17,,PS5
 TRANSFER .17,,PS6
PS4 QUEUE QSS4
 SEIZE SS4
 DEPART QSS4
 ADVANCE 1
 RELEASE SS4
 TRANSFER .50,,PS3
 TRANSFER .50,,PS4
PS5 QUEUE QSS5
 SEIZE SS5
 DEPART QSS5
 ADVANCE 1
 RELEASE SS5
 TRANSFER .50,,PS2
 TRANSFER .50,,PS5
PS6 QUEUE QSS6
 SEIZE SS6
 DEPART QSS6
 ADVANCE 1

 RELEASE SS6
 TERMINATE
; MS/2/
 GENERATE 100
 TERMINATE 1

Simulation of the model has given the

status of the processes for a given time
interval.

When looking at a process, part of the
results obtained are:

FACILITY ENTR. UTIL. AVE.TIME AVAIL. OWNER
 SS1 2 0.010 0.500 1 1
 SS2 4 0.040 1.000 1 0
 SS3 2 0.020 1.000 1 0
 SS4 2 0.020 1.000 1 0
 SS5 1 0.010 1.000 1 0

QUEUE MAX CONT. ENTRY ENTRY(0)
AVE.CONT.
 QSS1 1 0 2 2
0.000
 QSS2 1 0 4 4
0.000
 QSS3 1 0 2 2
 0.000
 QSS4 1 0 2 2
 0.000
 QSS5 1 0 1 1
 0.000

 For the specified time interval, the process

under investigation was two times S1, four
times S2, two times S3 and S4, one time S5. At
the end of the interval is the execution state
(S1).

The following data is obtained from ten
processes:

FACILITY ENTRIES UTIL. AVE.TIME AVAIL.
OWNER
 SS1 23 0.220 0.957 1 11
 SS2 29 0.290 1.000 1 9
 SS3 27 0.270 1.000 1 0
 SS4 17 0.170 1.000 1 0
 SS5 8 0.080 1.000 1 0
 SS6 7 0.070 1.000 1 0

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT.
AVE.TIME
QSS1 1 0 23 22 0.010
0.043
 QSS2 2 1 30 28 0.020
0.067
 QSS3 2 0 27 24 0.030
0.111
 QSS4 1 0 17 17 0.000
0.000
 QSS5 1 0 8 8 0.000
0.000
 QSS6 1 0 7 7 0.000
0.000

International Scientific Conference “UNITECH 2019” – Gabrovo 348

5. CONCLUSION
A probabilistic analytical model of

processes in the LINUX operating system is
proposed. It determines the probability that the
process being studied is in a certain state at a
given time, as well as the probability of it
being in a certain state after a certain time. The
model is simulated with the GPSS software.
The proposed model can be used to model and
study discrete-state processes.

6. ACKNOWLEDGMENT

The work presented in this paper was
funded been prepared with the financial
assistance of contract No. 1907E for
conducting research on a project
"Implementation of innovative ICT

technologies in training" at the Technical
University of Gabrovo.
7. REFERENCES
[1] Clymer, J. System Analysis Using Simulation

and Markov Models, Prentice-Hall, N. J., 1990.
[2] Daniel P Bolvet, M Cesati, Understanding the

LINUX Kernel, O'Reilly Media, 2000
[3] FerreiraF., A. Pacheco, Simulation of semi-

Markov processes and Markov chains ordered
in level crossing, Next Generation Internet
Networks, 2005, pp. 121-128.Tavel, P. 2007.
Modeling and Simulation Design. AK Peters
Ltd., Natick, MA.

[4] Herbort C., UNIX- Practical Visual Guide,
SoftPress, 2005

[5] Silberschatz A., Operating System Concepts,
N.Y., 2009

[6] Stallings W., Operating Systems: Internals and
Design Principles, N.Y., 2008.

	1. INTRODUCTION
	2. STATE OF THE PROCESSES IN LINUX
	3. ANALYTICAL MODEL
	4. MODEL SIMULATION
	5. CONCLUSION
	6. ACKNOWLEDGMENT
	7. REFERENCES

