
International Scientific Conference “UNITECH 2019” – Gabrovo 269

INTERNATIONAL SCIENTIFIC CONFERENCE

15 – 16 November 2019, GABROVO

DBMS RESPONSE SPEED TESTING SYSTEM

Stanišević Ilja
Valjevo Business School of Applied Studies,

Valjevo, Serbia

Slobodan Obradović Mladjen Vićentić
 Faculty of Electrical Engineering Valjevo Business School of Applied Studies,

 East Sarajevo, Bosnia and Herzegovina Valjevo, Serbia

Abstract
During the development of the information system for Valjevo Business School of Applied Studies it was necessary

to evaluate available DMBS alternatives. Instead of using some of existing banchmark software tools, the development
team has built a simple software adapted to test features relevant for the school’s system. This paper describes applied
methodology, design, development and evaluation of the realized response speed testing software.

Keywords: Benchmark, Performance evaluation, Database management systems, Microsoft SQL Server, MySQL, MS
Access

INTRODUCTION

The need for objective database
management system evaluation had emerged
during realization of the information system
for Valjevo Business School of Applied
Studies. Instead of using some of existing
benchmark tools it was decided to develop a
software tool for measuring response speed
during execution of various SQL commands.
This paper describes criteria determination,
development and functionalities of the realized
testing tool.

It was necessary to perform adequate
measurements to provide objective evaluation
of the tested DBMSs. One approach is to apply
some of many existing benchmark tools. Good
and high-quality benchmark system for testing
database management systems, according to
Gray [1] should have the following
characteristics:
 relevance – it has to be adequate for the

largest number of potential users;
 portability – it can be applied on many

different (desirably all) existing
DBMSs;

 simplicity – it has to be simple, easy to
use and not to consume too many
resources;

 scalability – it has to be adequate for
many different (desirable all) computer
systems and architectures, large as well
as small.

These characteristics, by its nature, are
frequently contradictory. For instance, feature
of simplicity is opposite to portability feature.
Therefore, it is necessary to establish adequate
compromise among these characteristics [2].

Many factors can have an impact on the
measuring outcome. The results can be
depended on hardware (i.e. CPU speed,
number of cores, memory access speed, the
amount of RAM memory in the system, bus
speed, hard disc drive speed etc.), on system
software (the way operating system deals with
the memory, threading or locking), on data
schema, on amount of previously recorded
data, on database access application, on
database configuration (cash amount dedicated
to queries, limit of established client
connections to the tested database, the way of
index implementation, network protocols used
for database access...) [3].

Development of database technology led to
development of number of measuring software
tools (benchmarks) which test and evaluate
various database features. Therefore, we have

International Scientific Conference “UNITECH 2019” – Gabrovo 270

transaction processing benchmarks,
benchmarks for relational databases, for
object-oriented databases, XML based
databases benchmarks, decision support
systems (DSS) benchmarks, benchmarks for
non-SQL databases, for cloud databases [2]
[4]. There is a separate organization dealing
with relational databases benchmark standards,
Transaction Processing Performance Council –
TPC. The organization issues standards and
verifies correctness of benchmark tools [4].

There are many database benchmarks on
the market today, like Quest [5], STS Soft [6],
Hammer DB [7], etc. Many of these tools are
open source and freeware, therefore they can
be used without a need for additional funding.
Anyway, there is a significant problem related
to reliance on these tools. Most of them are
created and designed to be generally
applicable. As a result, the tools test and
evaluate many features irrelevant for our
purpose. For instance, our system has only few
input points, therefore performance of dealing
with many users is not relevant. The system is
planned to be used in the local area network,
so internet performance is of no importance.

There are distinct benchmark tools intended
to evaluate special kind of databases [8], as
well as tools which evaluate particular
database features [9] but neither of these is
appropriate for determination of the best
DBMS for the school system, due to its narrow
applicability domain.

Taking all of the above in consideration, the
development team has adopted a different
strategy. Instead of using pre-made general
purpose benchmark tool, the team has
developed a separate testing software to
objectively evaluate features relevant for the
school system. Furthermore, the software will
be developed and implemented in the exactly
same hardware and software environment as
the school system.

Of course, the testing tool like this would
not fulfil requests for portability and
scalability according to Gray [1], but these
features have no importance for our purpose.
On the other hand, the tool would at the most
fulfil request for relevance (as being designed
for particular system and environment) and
simplicity (only features relevant for the
school information system would be tested).

This will provide that the tests will show the
most adequate DBMS for the school’s system.

TECHNICAL PRESUMPTIONS

Information system for Valjevo Business
School of Applied Studies was developed for
exploitation in the school’s local area network
(LAN), according to client-server model. The
network consists of four servers (domain
control server, database server, internet access
control server and back-up domain control
server) and approximately 120 workstations.
The servers run under Windows 8 server
operating system. The workstations, due to
different age of the stations (some are quite
new, but some are almost obsolete), work on
different operating systems, i.e. Windows 10,
Windows 7 and Windows XP, but they all
have .NET framework 3.5 installed.

The testing tool was realized using C#.NET
programming language. The programming
environment was MS Visual Studio
Community 2017, version 15.9.14. The school
information system was developed in the same
environment using the same programming
language. Due to compatibility the .NET
Framework version 3.5 was adopted as a
software framework since it can be installed
and run to all school’s computers, regardless
operating system version and hardware
obsolescence.

The school management has decided for
security and control reasons that system should
be available only through the local area
network, i.e. access through internet would not
be supported. Since there is domain control
server which controls user’s roles, prerogatives
and access rights, the school system can rely
on security primitives provided by the
operating system.

The school information system should
provide functionalities to support following
activities:

- all activities performed by student
service office (i.e. student’s registry,
enrollment track, exam’s registration,
issuing various certificates, etc.);

- lectures organization activities
(management of classes, lectures
record, track of attendance, records of
the realization of the curriculum during

International Scientific Conference “UNITECH 2019” – Gabrovo 271

a semester as well as during a school
year, etc.)

- mentor activities (success monitoring of
the students for various subjects,
departments, sections, school years,
tracking attendance at the exams
individually as well as for different
groups of students, etc.);

- activities performed by the human
resources department (registry of
employees, track of staff attendance,
etc.).

From the list of required functionalities can
be noticed that the system will be less
burdened by inserting and updating data. The
emphasis will be put on retrieving data and
generating various reports. Most of data entry
activities on everyday basis will be performed
from one spot at the student service office. On
the other hand, data search activities will be
performed by all users of the system.

All activities on the system will be
happening in real time (many of them on the
desk window). Therefore, the rapid response
of the system is required and the most
important criterion for the database
management system is its speed.

DESIGN OF THE SYSTEM

The conceptual design of the testing system
is displayed on Figure 1.

The topmost layer is the user interface. It
was built using Windows Forms library, and
controls provided within that library. The
reason for choosing the WinForms library
(instead of, for instance, Microsoft
Presentation Foundation – MPF as a graphical
subsystem for rendering user interface) is the
fact that WinForms is used for development of
the user interface in the school information
system, so this option is more suitable for our
purpose. Furthermore, the most common
controls are used (i.e. text boxes, buttons
combo and list boxes) which makes the
interface user friendly and intuitive for a user.
He can be trained to use the system in a very
short time.

The user interface enables the user to define
parameters for basic SQL selection and editing
commands. He enters only specific parts of a
command, such as field names, logical
operators or constant values (e.g. “name =

‘Peter’ and year = 2019”). All other parts of
the command are automatically generated by
the software. This solution speeds up the
whole measurement process.

Fig. 1. The testing system design

The user has two additional options. One
displays results of query/content of the
database (depends on previous action) in a
database view control. The other one deletes
all data in all tables and clears the database,
which is convenient for repetitive
measurements. At the end, the user interface
can invoke saving content of the list box where
results are displayed in a separate file, by
sending a request to the native operating
system file system.

User interface designed in this way is
simple and intuitive for usage, but yet has an
option for all available functionalities.
Interface form containing all functionalities is
presented in Figure 2.

Interrupt caused by a click on some of the
main command buttons invokes the query
generator. It creates adequate SQL command,
depending on the values entered in the check
and text boxes on the user interface form. The

International Scientific Conference “UNITECH 2019” – Gabrovo 272

queries consist of a basic command (i.e.
SELECT, INSERT, UPDATE, DELETE) and
an optional part (i.e. JOIN and/or WHERE
clause defined by user).

Fig. 2. User interface form

The query generator transfers the queries to
the database interface. Depending on the
chosen DBMS, the database interface calls the
adequate method appropriate for the chosen
database. This layer performs a simple parsing
and takes care of syntax differences among
SQL dialects used by tested DBMSes (for
instance, the syntax to indicate data/time
values, or to include necessary brackets where
requested).

There are global variables in the system
which contains values of separate connection
strings for each tested database. The database
interface then invokes appropriate method and
sends the query as a parameter. The method
then establishes connection to the wanted
DBMS using corresponding data provider,
sends a request for execution of the received
query, picks up a result, closes the connection,
and finally, if the query was for SELECT
command, it fulfills the database table with the
query result (i.e. received relation). The user
can then by clicking the appropriate button see
the resulting data table in a DataGrid View
control on the user interface form.

This design enables relatively simple
extension to include additional DBMSes. All
that is required is reference to the adequate
data provider and writing the corresponding
method within database interface.

Data providers, each for a single database,
receive requests from database interface and
send them to the right DBMS for the
execution.

The query and response time are recorded
in a list-box on the main interface form, and
the next query can be performed. Of course,
this approach measures not only response time
of the DBMS but the time needed for software
processing of a query within the testing system
as well. In ordinary benchmark tools this
would be a serious deficiency, but in this case,
it is an advantage since the same methods are
designed to be used by the school information
system for accessing the database. Therefore,
this approach provides us a more adequate
evaluation of the tested database management
systems.

Finally, at the end of a session, all results
can be recorded in a text file on a hard disk
drive for further processing by simple click on
the corresponding button.

THE SYSTEM FUNCTIONALITY

The testing software was intended to be
user friendly as much as possible, but still to
keep all required functionalities.

In the beginning, a user is able to choose
the wanted DBMS (i.e. MS SQL Server,
MySQL, Access) by simple selection of the
appropriate combo-box option. Next, the user
has option to choose among four basic SQL
commands (i.e. SELECT, UPDATE, INSERT
and DELETE). Optionally, he can activate
automated filling of the tables with given
number of rows by simple entering desired
number of rows. The user can include logical
condition in generated SELECT, UPDATE or
DELETE query by simple entering content of
WHERE clause. The clause will be then
automatically added into the query.
Additionally, he can define fields editing by
entering SET clause when UPDATE query is
to be performed.

Finally, since the relational database
defined by the school system project is strictly
normalized and is in Boyce-Codd normal form
[10], it is important to evaluate DMBSs
response speed for SELECT queries
containing JOIN clause.

International Scientific Conference “UNITECH 2019” – Gabrovo 273

By checking the appropriate check-box on
the form, user can initiate addition of a JOIN
clause into the query. There are two tables and
a multiple functional dependency (i.e. M: N
relation) between them, so the third table, the
link table, is used. In case of checked check-
box, the testing system automatically loads
generated data into the secondary table and
establishes relation between depended tables
by filling the auxiliary table. The JOIN clause
is added to the generated query, so the
response to the query when all three tables are
involved can be measured. Described database
schema is presented in figure 3.

Fig. 3. The testing database schema

This structure was adopted for the test

database as the most generic one, i.e. all other
cases can be derived from this structure. Of
course, the school information system will
contain much complicated structure, but, at the
end, it always can be reduced to the set of
structures presented in Figure 3.

Response records containing the executed
query, number of records and duration of
execution are automatically added into the list
box control. At the end of a session by clicking
the corresponding button on the form, content
of the list control can be saved in a separate
file on the hard disk drive, and used later in
additional processing of the results.

CONCLUSION

By realization of this testing system, we
have got a tool to evaluate different DBMSes
according to the specific requirements of the

software system we were going to develop.
The testing tool was not intended for general
evaluation of tested DBMSes but to provide a
guideline that lead us to choose of the most
suitable database management system for our
particular need.

It can be concluded that this tool
completely answered the task. The
development team had the opportunity to test
the acceptable alternatives regarding DBMS
selection in the real environment and to,
according to the objective results, make
justified decisions

REFERENCE
[1] Gray, J. (ed.). “The Benchmark Handbook for

Database and Transaction Processing Systems
2nd edition”. Morgan Kaufmann, 1993;

[2] Darmont, Jérôme “Object Database
Benchmark”, Encyclopedia of Information
Science and Technology, I-III, Idea Group
Publishing, pp.2146-2149, 2005.

[3] MySQL, “MySQL Performance Benchmarks –
Measuring MySQL Scalabilitz and
THroughput”, A MySQL Technical White
Paper, March 2005, available at:
http://www.jonahharris.com/osdb/mysql/mysql
-performance-whitepaper.pdf

[4] Darmont, Jérôme, “Data Processing
Benchmarks”, Encyclopedia of Information
Science and Technology, Third Edition,
pp.146-152, 2014

[5] Quest, Benchmark Factory For Databases,
available at:
https://www.quest.com/products/benchmark-
factory/

[6] STS Soft, Database Benchmark, available at:
http://stssoft.com/products/database-
benchmark/

[7] HammerDB, available at:
https://www.hammerdb.com/

[8] Cudre-Mauroux Philippe, Kimura Hideaki,
Lim Kian-Tat, Rogers Jennie, Madden Samuel,
Stonebraker Michael, Zdonik Stanley B.,
Brown Paul G. “SS-DB: A Standard Science
DBMS Benchmark” XLDB 2010, Stanford
University, CA, Oct. 6-7, 2010.

[9] McKnight William, Dolezal Jake and Barker
Roger, “Cloud Database Performance
Benchmark, Product Profile and Evaluation:
Actian Vector and Microsoft SQL Server”,
MCG Global Services, February 2018.

[10] Alagić Suad, „Object-oriented Database
Programming“, Springer-Verlag, 1989.

	Valjevo Business School of Applied Studies,
	Valjevo, Serbia
	introduction
	TEchnical presumptions
	DESIGN of the system
	the system FunctionalitY
	CONCLUSION
	REFERENCE

