
International Scientific Conference “UNITECH 2019” – Gabrovo 299

INTERNATIONAL SCIENTIFIC CONFERENCE

15 – 16 November 2019, GABROVO

HACK COMPUTER: FPGA IMPLEMENTATION AND SYSTEM
PROGRAMMING SUPPORT

Duško Kovačević, Dejan Vujičić, Slađana Đurašević, Marina Milošević, Uroš Pešović

University of Kragujevac, Faculty of Technical Sciences in Čačak, Serbia

Abstract
The Hack computer is custom-made computer system which is primarily built as a teaching architecture. Its design

and functions are relatively simple, but still emphasize all the complexity of modern hardware and software approaches
in computer design. In this paper, the FPGA realization of Hack computer is shown. We demonstrated its
implementation on Altera DE2 FPGA development system, along with appropriate software support in terms of high-
level language compiler, virtual machine translator, and assembler.

Keywords: Hack computer, FPGA, system programming, program translators

INTRODUCTION
 Hack computer system is simple enough to
be build by students in few hours using basic
logic gates. Yet, it is complex enough, to
demonstrate to students basic principles of
computer hardware and system software [1].
Originally, this computer system is build using
Nand2Tetris Software Suite, which enables
virtual creation of computer hardware and
software components and testing build
components on simulator which runs on
personal computer [2], [3].

This computer system has been
implemented on FPGA platforms by various
researchers. In this paper we demonstrated
work flow of design and implementation of
Hack computer system on Altera DE2 FPGA
development board, along with appropriate
software support.

The software support of Hack computer is
comprised of rudimentary operating system
support, high-level language compiler, virtual
machine translator, and assembler. Altogether,
they ideally represent the architecture of
modern software systems.

HACK COMPUTER

Hack computer employs Harvard
architecture with independent program and
data memory. Program is executed from
32KWord ROM, where instructions are 16 bit
long. CPU has 16-bit wide data bus and

supports two types of instructions: A-
instruction used for loading literals and C-
instruction which could perform one of the
eighteen basic logical and arithmetical
operations. All instructions are one word long
and PC is incremented on every new
instruction, except instructions with jump
conditions which load content of A-register
into PC if jump condition is met.

Fig. 1. Structure of Hack computer

CPU has two registers, A – register which

is loaded by A-instructions, or by ALU output
and D register which can be loaded from ALU
output, Fig. 2. Content of D-register is used as
the first operand and the second operand can
originate either from A-register or from Data
memory. ALU unit has simple structure and
has 6 control inputs which could zero or
negate input, select addition or logical AND
operation, and negate ALU output. These
control inputs have 64 possible combinations
which my using De Morgan theorems provide
18 different operations.

International Scientific Conference “UNITECH 2019” – Gabrovo 300

Fig. 2. Structure of Hack CPU

Data memory is divided into 16KW RAM

memory for program variables, 8KW Screen
memory and one memory location for
keyboard. Screen memory is used to present
monochromatic image on 512x256 screen
resolution, Fig. 3 [4].

Fig. 3. Structure of Data memory

Hack computer was implemented on Altera

DE2 development board, equipped with
Cyclone II FPGA with 35k logic elements.
Among many peripherals, this board also
includes 512k SRAM, VGA DAC and PS2
interface. All computer components, except
ROM are implemented by FPGA.

Cyclone II has 105 M4K memory blocks
which were sufficient to implement Data
Memory (Fig. 4), while Program memory was
implemented on SRAM chip which was
loaded from personal computer using Altera
Control Panel application.

Fig. 4. FPGA realization block diagram

CPU is realized in VHDL language,

according to the CPU structure shown on Fig2.
CPU is composed from two registers, program
counter and ALU unit and control unit which
decodes instructions and controls all other
parts of CPU. Data memory is composed from
three different types of memory components
which are generated using Memory Compiler.
RAM memory which is 16k word is realized
as single port memory which is only accessible
by CPU on lower addresses. Screen RAM is
realized as true dual-port memory which can
be read/written from CPU and which is
cyclically read by VGA controller and data are
send to VGA DAC. Role of the VGA
controller is to control position of the beam on
screen and to generate strobes for horizontal
and vertical synchronization. Based on the
current pixel position, appropriate bit is red
from particular address in Screen RAM. Based
on the bit value, blue color pixel is generated
by VGA DAC for value one, otherwise white
one is generated.

Since Screen resolution was set to 640x480,
pixels outside of 512x256 zone are colored in
black. VGA controller cycles trough Screen
RAM 60 times per second and it uses 50MHz
clock to drive VGA clock to desired frequency
using PLL.

Keyboard is implemented as simple dual-
port memory, which enables keyboard to write
the ASCII code for pressed key in one
location, which can be subsequently read by
CPU. These three memory components are
controlled by address decoder, shown in Fig.
5, in order to activate just one which is
accessed according to address ranges
presented in Fig. 3.

International Scientific Conference “UNITECH 2019” – Gabrovo 301

Fig. 5. Address decoder for Data memory

PS/2 keyboard is interfaced to FPGA using

PS/2 controller which communicates with
keyboard using I2C protocol. Since Hack
computer uses different key encoding than
PS/2 keyboard, appropriate key mapping is
added to convert key presses. Structure of
complete Hack computer system is presented
on Fig. 6.

Fig. 6. Structure of implemented Hack computer

Hardware components of computer system

are tested using simple program written in
assembler which fills screen with line
segments when any key is pressed (Fig. 6).

Fig. 6. Assembly code for Hack computer testing

SOFTWARE SUPPORT
Along with the hardware realization on

FPGA platform, the Hack computer suite is
comprised of assembler, virtual machine
interpreter, and Jack compiler. Jack is object-
based high-level language with support for
classes, basic I/O capabilities, and possibility
of library updates [1].

Fig. 7. The software support of Hack computer

The Hack software support is represented in

Fig. 7. The top level part is operating system,
which in fact represent the software libraries to
support functioning of Jack programming
language and its compiler.

The second layer in software architecture is
Jack compiler, which translates code written in
Jack programming language into virtual
machine code. The main parts of Jack
compiler are syntax analyzer and code
generator. Within syntax analyzer, there are
tokenizer and parser. Tokenizer is responsible
for creating elementary tokens, and parser for
comprising tokens into statements (Fig. 8).

Fig. 8. Structure of Jack compiler [4]

The third layer in software architecture is

virtual machine translator. Its function is to
translate code generated by Jack compiler into
assembler code. The virtual machine is based
on several memory segments in which the

International Scientific Conference “UNITECH 2019” – Gabrovo 302

global variables, local variables, function
parameters, etc. are stored. It is somewhat
similar in functioning to Java virtual machine
and is mainly stack-oriented [5].

The final layer in Hack software support is
the assembler. Its function is to translate the
assembler code generated by virtual machine
interpreter into machine language. The
assembler is two-layer, where the first layer is
responsible for translating code without
populating actual addresses from symbol table,
and the second layer populates missing
addresses that correspond to ones in the
symbol table.

CONCLUSION

The Hack computer is simple, but yet
powerful enough to be taught to students as an
example of modern hardware and software
computer architecture. The FPGA realization
of Hack computer is presented in this paper.
We successfully demonstrated that although
relatively simple, this computer can be
implemented in FPGA environment, together
with its processor, memory system, and basic
I/O support for screen and keyboard.

The software part of the Hack computer is
presented as well. It is consisted of several
layers, together with high-level language
compiler, virtual machine translator, and
assembler. In this configuration, it fairly
resembles the software architecture of modern
object-oriented programming languages and

their compilers, primarily based on virtual
machine implementation.

The architecture of Hack computer enables
improvements in terms of different hardware
design and support to various I/O modules. Of
course, it would be accompanied by
appropriate software support, which can be
done as a future work in this direction.

ACKNOWLEDGMENT

The work presented in this paper was
funded by grant TR32043 by the Ministry of
Education, Science, and Technological
Development of the Republic of Serbia.

REFERENCE
[1] Noam Nisan, Shimon Schocken, A Synthesis

Course in Hardware Architecture, Compilers,
and Software Engineering, SIGCSE 2009,
Chattanooga, TN, USA, March 4-7, 2009

[2] Shimon Schocken, Taming Complexity in
Large Scale System Projects, SIGCSE’12,
February 29–March 3, 2012, Raleigh, North
Carolina

[3] Nand2Tetris Official Site,
https://www.nand2tetris.org, accessed on:
October 2019

[4] Noam Nisan, Shimon Schocken, The Elements
of Computing Systems: Building a Modern
Computer from First Principles, MIT Press,
2005

[5] Shimon Schocken, Virtual machines:
abstraction and implementation, SIGCSE Bull.
Vol. 41, No. 3, July 2009, pp. 203-207.

	introduction
	HACK Computer
	Software SUPPORT
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCE

