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Abstract 
In this paper an approach for estimating the state of a rail-bound summer toboggan is presented. Usually those vehicles 

are accelerated by downhill force and controlled manually by moving a brake lever. To avoid accidents, an automatic 
brake system for controlling speed and distance was developed. In order to design a controller based on a given sensor 
configuration, a state estimation making use of not only sensor data but also a model of the plant could be useful. To 
accomplish that, a simplified physical model of a sled, including sensors and the brake actuator, was derived. Based on the 
model and a given sensor configuration, an observer in the form of an extended Kalman filter was designed. Both, the 
model and the observer, were implemented and tested using Simulink software. The simulation results show that the 
extended Kalman filter could be a useful approach for estimating the state of the system and furthermore be a suitable base 
for running the controller on a time critical embedded system.  
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INTRODUCTION 
    Summer toboggan rides are one type of 
amusement rides, where one or two riders sit 
on a sled, which is accelerated by downhill 
force. A lever can be used to brake the sled by 
moving it towards the body, while when the 
lever is pushed forward, the brake is disabled 
and the sled accelerates. In the past, these 
toboggan rides worked without any electronics 
and the user was responsible to brake and 
avoid accidents. Because of regulations the 
maximum speed of these vehicles should be 
restricted. To accomplish that, mechanical 
systems were integrated in the sleds. These 
systems work well for a fixed maximum 
speed, but have large tolerances and are 
maintenance-consuming. 

In order to avoid collisions, a system was 
required, which can detect and control the 
distance and a variable maximum speed. To 
achieve this goal, an automated system 
consisting of sensors, an embedded control 
unit and an automatic brake actuator was 
developed. First results have shown, that these 
components work well. By implementing a 
simple controller, the system is able to control 
the speed and can avoid accidents.  

To improve the comfort for the riders, a 
more sophisticated control algorithm has to be 

developed. An improvement of the control 
algorithm may be achieved by including an 
observer, which is able to reconstruct the state 
of the plant at each time step and so form a 
basis for designing a smooth controller, which 
is optimally not perceptible for the riders.   

In this work, the extended Kalman filter 
(EKF) is applied on the system with a given 
sensor configuration for estimating the state of 
one sled. The distance between two sleds is 
supposed to be available to the controller by 
wireless communication. The controller design 
is not part of this work.  
 
EXPOSITION 

In the next part, a simplified physical model 
of the plant including the brake actuator of the 
sled is derived. In the subsequent part, the 
EKF is adopted to the problem. After that, the 
implementation of the model in Simulink is 
introduced followed by showing some 
simulation results. A discussion and conclusion 
including a view to further work mark the end 
of this report. 
 
MODEL 

A sled of the toboggan ride is accelerated 
by a downhill force FD which depends on the 
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track slope α and the mass m of the sled 
including the riders. This force is calculated by 

 
FD = m g sinα ,             (1) 

 
where g is the acceleration of gravity. If there 
is no brake active, two relevant friction forces 
can be identified. First is the rolling resistance 
 

FR = cR m g cosα ,             (2) 
 
with the coefficient of rolling friction cR . The 
second one is the drag force 
 

FA = ½ ρ cw A v² ,             (3) 
 
where ρ is the density of the fluid, cw the drag 
coefficient, A the cross sectional area and v is 
the speed of the sled. 

The automatic brake system consists of a 
DC-motor which is connected to a permanent 
magnet. When the magnet is driven 
downwards over a conductive material, which 
is situated between the rails, eddy currents are 
generated and the sled is deaccelerated. The 
brake force can be approximated by the 
equation [1] 
 

FB = kb b² v .                       (4) 
 
In this equation the constant kb summarizes the 
electrical and mechanical parameters of the 
eddy current brake. 

The resulting force Fres is given by the sum 
of forces: 
 

Fres = FD - FR - FA - FB             (5) 
 
The resulting acceleration can now be 
determined by inserting formulas 1-4. By 
replacing the term ½ ρ cw A with the parameter 
kl, this leads to 
 

ares = g sinα - cR g cosα – m-1kl v² 
- m-1kbb²v.                    (6) 

 
Because both, the manual brake and the motor, 
act on the brake magnet, the maximum is 
taken to model its position. Rewriting this 
system in state space form  
 

dx/dt = f(x,u)             (7) 

leads to the state equations 
 

dx1/dt = x2 
dx2/dt = g sinx3 - cR g cosx3 – m-1kl x2² 

   - m-1kb max²(x4,u2) x2    
dx3/dt = dα(x1)/dt 
dx4/dt = u1              (8) 

 
where x1 is the position s of the sled and x2 is 
its velocity. The slope α and the magnet depth 
are modeled as x3 and x4 respectively. The 
model inputs are the brake movement speed u1 
and the manually forced position of the brake 
magnet u2. 

 
EXTENDED KALMAN FILTER 

The realized system contains a position 
sensor on the bottom of the sled, which is able 
to detect binary position marks, which are 
placed all over the track in fixed distances. 
The velocity is not directly measurable. 
Because the track profile stays constant all the 
time, information about the slope is also 
available. The depth of the magnet is only 
measurable, when the lever is not manipulated, 
because it is loosely coupled to the motor. 
When a rider brakes manually, the magnet 
could be in a lower position than the motor 
position feedback suggests. 

So the state vector is not always available 
only by using measurements. To reconstruct 
the state vector or even the speed of the sled, 
which is the primary control variable, an 
observer has to be implemented. In this case 
the extended Kalman filter is used for this 
purpose [2]. In contrast to other kinds of 
observers, i.e. the Luenberger observer [3], the 
EKF can use the unlinearized system without 
further approximations for its prediction step. 
Also the uncertainties can be modelled by 
adding process noise w or measurement noise 
v to the discrete state equations: 

 
xk+1 = f(xk,uk)+wk 
yk = f(xk,uk)+vk . 
 
For state estimation, the EKF uses a 

prediction and an update step. In the prediction 
step the next state of the system is estimated 
by using the current estimation and calculating 
the next state using the nonlinear but time 
discretized model.  
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IMPLEMENTATION 
The plant and the EKF were both modeled 

using Simulink software. For implementing 
the EKF the Control System Toolbox was used 
[4]. This toolbox contains a block (Fig. 1), 
which implements a version of the EKF, where 
measurement inputs can be enabled or disabled 
to model sensors inputs, which are not 
available all the time. For the modelled system, 
this is very useful because the position 
measurements are not available in a continuous 
time interval. Also the measurement of the 
brake magnet is only assumed to be reliable 
when the brake lever is not manipulated. The 
manipulation of the lever can be detected by a 
sensor in binary form and this signal is used to 
disable the measurement of the motor 
feedback.   

 

 
Fig. 1. The EKF block of the Simulink Control 

System Toolbox consists of an input for the 
covariance Q, measurement inputs y and Enable 

inputs. The output xhat represents the state 
estimation. 

 
For simulating the plant, the state equations 

(8) were modeled using standard Simulink 
blocks. Because in the real system the brake 
magnet position is restricted due to mechanical 
boundaries, a limited integrator was used. As 
control input a signal with a defined motor 
velocity was generated. 

To emulate the position sensor signal, the 
first component of the continuous state vector 
from the model is used. In discrete position 
distances, a short high level signal is 
generated, which is detected using a rising 
edge detection block. This can be viewed as an 
emulation of an interrupt triggered capture. 

The two remaining measurements (the 
slope angle and the brake position) are taken 
directly from the state vector, because they are 
assumed to be directly detectable. To each 
emulated sensor signal, measurement noise is 

added. Furthermore, all sensor signals are fed 
through a rate transition block (zero order 
hold), which generates time discrete signals 
from continuous data.  

For each sensor signal, an enable line for 
activating measurements in the EKF-block is 
generated. The position measurement is only 
available when a rising edge is detected. Also 
the slope angle is assumed to be available only 
on those track points. A manual brake action 
disables the measurement of the brake 
position. 

Figure 2 shows the model including the 
EKF. 

 
Fig. 2. The enhanced model with added sensor 

emulation and the EKF 
 
SIMULATIONS AND RESULTS 

For checking the plausibility of the model, 
the plant was simulated using three different 
track profiles, which can be analytically 
modelled: an inclined plane with constant 
slope, a varying slope using a cosine function 
and an exponentially falling function. The 
slopes were set regarding real track profiles. 
For checking the brake force, the parameter kb 
was adopted to real data from test bench trials. 
Friction parameters were set to plausible values 
regarding comparable systems and materials. 
Figure 3 shows the simulation results for a 
constant slope with parameters set to m = 200kg, 
cR = 0.01, kl  = 0.36 and kb = 10000. 

To prove the state estimation using the 
EKF, the simulation was carried out using 
different parameters in the simulated plant and 
the discretized model of the observer. Figure 4 
shows the results for using the EKF. The plant 
parameters are equal to figure 3, but the EKF 
uses a parameter set of m = 150kg, cR = 0.02, 
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kl = 0.54 and kb = 8000. The process covariance 
was set to diag(0.01, 0.01, 1e-4, 1e-6) and the 
measurement covariance to diag(0.01, 0.0001, 
0.0001).     

 
Fig. 3. Simulation of the plant model: A sled is 

driving down a track with constant slope. After 15 
seconds the brake magnet is driven to maximum 

depth. After 20 seconds the brake is released. The 
graph shows the components of the state vector. 

 

 
Fig. 4. Simulation of the plant (grey solid line)  

and the estimated state (black dashed line)  
using the EKF. 

 

DISCUSSION AND CONSLUSIONS 
Simulation results show, that the EKF seems 

to be an appropriate method to reconstruct the 
state vector from measurements with a given 
sensor configuration. Despite of using model 
generated data, the variation of parameters in a 
realistic range shows, that this approach could 
also work for real data. The plant was adopted 
to real data from brake measurements and 
friction parameters were used regarding 
similar systems and materials. The covariance 
matrix was estimated regarding expected 
variations of the sensor and plant data. 

 
FURTHER WORK 

The next step is to validate the model using 
real data recorded on a real track. To 
accomplish that, an embedded system with the 
possibility of storing raw data is being 
developed. After that, a controller for this 
nonlinear system has to be designed and 
tested. 
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