
International Scientific Conference “UNITECH 2017” – Gabrovo II-336

INTERNATIONAL SCIENTIFIC CONFERENCE
17-18 November 2017, GABROVO

MEASUREMENT OF SOFTWARE RELIABILITY

Aleksandar Dimov Krasimir Baylov
University of Sofia “St. Kliment Ohridski” University of Sofia “St. Kliment Ohridski”
Faculty of Mathematics and Informatics Faculty of Mathematics and Informatics

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

Abstract
Software reliability is important quality factor to be considered about contemporary software intensive systems.

However currently there does not exist enough support in terms of formal measurement, models and practices to
facilitate software reliability estimation. The paper describes a pattern of a methodology for evaluation of reliability of
complex software intensive systems, which is based on existing knowledge on specification and modeling of reliability.
Practical significance of this pattern is that it may be applied when it is uncertain if the system is ready to be released
to the market.

Keywords: Software Reliability, Software quality factors, Measurement of software reliability.

INTRODUCTION

Quality of software intensive systems has
recently become a very important context in
the domain of software systems. Quality
attributes of software are sometimes also
called non-functional requirements (or
characteristics/properties) and should be
distinguished from functional requirements.
Functional requirements define what the
system should do, non-functional requirements
put some additional constraints on how the
system should perform.

Traditionally, quality of software has been
given a primary importance with respect to
such application domains like embedded,
safety critical, real time systems and so on.
However, in recent times, terms as testability,
maintainability, usability and others gain
bigger attention. The list of quality
characteristics probably would be never
complete and depends highly on the
application domain.

For example the notion of maintainability is
quite undecided in different domains. The
ISO/IEC 25010:2011, standard [1], defines the
quality attribute of maintainability as more
general than modifiability, while the work
described in [2] considers exactly the opposite
– “Maintainability is a subset of what we call
modifiability”. The domain of web services is

even more different. Recently there was
released a standard by OASIS (Advancing
open standards for the information society) for
Web Services Quality Factors [3], where
neither maintainability, nor modifiability was
defined. The notion of interoperability was
defined there, instead.

This shows that although important,
software quality is still a general and quite
abstract notion, which may have different
meanings. Currently there doesn’t exist a
universally accepted measurement framework
of software quality, although there exist a lot
of examples for software metrics in general
[4]. A common approach for formalization of
software quality is needed, which will
establish unified measures for different quality
characteristics of software systems.

Dependability is one significant quality
parameter, for large variety of safety-critical
and embedded software systems and is defined
as the ability of a computing system to deliver
services that can justifiably be trusted [5]. It is
depicted by a number of attributes –
availability, safety, confidentiality, integrity,
maintainability and reliability:

• Availability represents readiness of the
system to deliver correct service.

• Safety is concerned about absence of
catastrophic consequences on the

 2017

International Scientific Conference “UNITECH 2017” – Gabrovo II-337

user(s) and the environment in case of
system failure.

• Confidentiality is the absence of
unauthorized disclosure of information,

• Integrity means absence of improper
system state alterations;

• Maintainability is the ability of the
system to undergo repairs and
modifications.

• Reliability is the continuity of correct
service delivering, i.e. the belief that a
software system will behave as per
specification over a given period of
time.

This paper presents a pattern for description
and measurement of dependability attributes –
namely reliability. The pattern is based on
existing knowledge on specification and
modeling of reliability. In next section of the
paper we give more information on the notion
of reliability; Section 3 presents the pattern for
reliability measurement; Section 4 discuss its
applicability and finally section 5 concludes
the paper.

RELIABILITY MODELING METHODS

Traditionally reliability is measured as a
probabilistic value and may be represented by
one of the following values:

• Probability of failure
• Failure rate
• Mean time to failure

As a probabilistic value, it needs large
amount of statistical data in order to calculate
its value. The most common way to obtain
such large amounts of data is by software
testing [6, 7] and other methods include
simulation, users feedback and experts
opinion.

Simulation takes into account that
reliability does not depend only on the
structure of the software but also on the
runtime information such as frequency of
component reuse, execution time spent
interactions between the components, etc.
Users’ feedback is a technique to get
information about software reliability
parameters of a system, by gathering data,
after it has been shipped to the market and
during its real usage. Data about system
failures is gathered by bug reports submitted

by users to a bug report subsystem and bug
reports may be classified according to specific
levels of severity. Experts opinion takes into
account that for simple enough portions of
code, reliability may be verified via code
review or formal verification of source code
[8]. Experts opinion for evaluation of
reliability is suitable when applied on simple
portions of code (usually up to few hundreds
lines) and results are expected to give a
reliability of 100%.

Currently, there exist two very broad
categories of methods for estimation of the
reliability of software systems which may be
generally called white-box and black-box
models.

Black-box models are also often referred as
reliability-growth models and there exist a
large number of them [10]. They are used to
reason about reliability of software systems,
without taking into account their internal
processes or structure. This means that they
rely purely on statistical data in order to
evaluate reliability of the overall system as a
monolithic whole. Normally, black box
models are aimed on application over failure
datasets, generated by testing of the system.
Nevertheless, given that simulation and users
feedback methods produce the output that is
required by the model, they may also be
applied for reliability estimation via black box
methods.

On the other side, the group of white-box
models [12, 13] consists of several kinds of
methods that are used to estimate the
reliability of software systems, based on the
knowledge of their internal structure and
processes going on inside them. This
knowledge may be expressed by different
means, such as architecture models, test case
models, etc. Usually architecture-based
software reliability estimation takes the
following main steps [12]:

(1) Identification of computational
modules (components) within software
architecture;

(2) Description of the actual architectural
model – this includes how components
are interconnected and interact with
each other;

(3) Definition of components failure
behavior – at this step the reliability

International Scientific Conference “UNITECH 2017” – Gabrovo II-338

parameters of components and their
measures are identified;

(4) Combination of the failure behaviour
with the architectural model.

Application of white box models has a lot
of advantages, among them are:

• Ability to reuse information about
reliability parameters of both the system
and the components that constitute it;

• Ability to find these modules that
influence systems reliability the most,
i.e. – possibility to isolate and remove
reliability “bottlenecks” within the
system and.

However, one of the most remarkable
assumptions of most white-box models is that
they suppose reliabilities of individual system
constituent parts are known in advance. Even
in case of very fine grained architecture and
decomposition of the system to small enough
components, their reliabilities should be
estimated in some way, for example via black
box-models.

RELIABILITY ESTIMATION PATTERN

Here we describe the pattern for calculation
of reliability of complex software intensive
systems, with respect to the information given
in the previous section.

Context
A software system is being developed and a

decision is needed when it is appropriate to
release it to the market.

Problem
As mentioned in the previous section there

exist four methods for collection of data for
calculation of software reliability (testing
simulation, users feedback and experts
opinion). Although testing is the most
common of these methods, it is not always the
most appropriate. For example, in the
embedded systems domain, some systems may
have ultra-high requirements towards
reliability, for instance levels of 1-10-12 and
more. It has been shown [9] that for achieving
such requirements purely by statistical
processing of testing data it is needed to test
with non-correlated input (e.g. non-correlated
test-cases) for hundreds or even thousands of

years. This of course is infeasible and
represents a major obstacle towards
application of reliability into everyday
development practice that should be solved.

It is widely known that the cost of testing in
software life-cycle may be even higher than
development or design in particular. In many
cases this is because it is really never known
when enough testing has been done. It could
be useful to have some formal means when to
stop the testing phase and declare readiness to
release the software to the market. Thus main
practical significance of the notion of
reliability is that it could be applied in order to
determine the moment when the system is
ready for the market.

However, as discussed above, testing is not
always applicable in many application
domains and sometimes additional methods to
gather reliability measurement data should be
applied. Next section describes the formal
procedure that should be followed to calculate
software systems reliability.

Solution
Software reliability of the system should be

continuously calculated and when it reaches a
required threshold, the system is considered
ready to be shipped.

The following activities should be
performed (fig. 1) :

S1: Define system architecture – this is a
complex activity. If there is a good
documentation of the system and enough
design has been performed prior to its
implementation, then the architecture already
exist. In such case the modules of the system
are identified. At this step a white box model
for software reliability estimation should be
also selected. For a complete list of white box
models, refer to [13].

(1) C1: For each component in the
architecture determine if it is possible to
be tested into a real environment. For
many application domains testing into a
real world environment is not possible,
for example for security or safety
reasons.

(2) C2: For each component which is not
possible to be tested determine if there
exist a simulation environment for it.

International Scientific Conference “UNITECH 2017” – Gabrovo II-339

Fig. 1. Activities for calculation of reliability for
complex software intensive systems

(3) S2, S3 and S4 are the steps where the

reliability evaluation data is collected.
Currently we do not know available
formal models for reliability estimation
via experts’ opinion. In that case,
possible results from S4 are either
reliability is 0 or 1. Zero means the
component is absolutely unreliable, i.e.
it should be significantly refactored and
1 means that the component is 100%
reliable. Indeed, in general case, it is
possible to estimate this via code
reviews for a relatively simple pieces of
code (in the range of several hundred
lines of code). In S2 there could be set a
stop criteria for testing, depending on
the target system.

(4) S5: Based on simulation and testing
data, reliability growth (black-box, see
section 2) model should be applied. For
instance an appropriate procedure for
selection of reliability growth model is
described in [11] and it could be used at
this step of the pattern.

(5) S6: The last step is to apply a white box
model in order to evaluate the overall
reliability of the system.

DISCUSSION

The pattern described in previous section
should be applicable in all domains of software
engineering to support the verification and
validation phase. This way, it is applicable for
wide variety of software systems. However,
there exist some difficulties and this section
makes a brief discussion of them.

Formal introduction of the notion of
reliability in development of software
intensive systems is mainly hampered by the
fact that most reliability estimation models
have theoretical impact. This section shows in
more detail some of the reasons about that.

Usually, black box models make a number
of simplifying assumptions, in order to
calculate reliability. Such assumptions include:

(1) Bug-fixing code is always correct -
when removing the fault that led to the
failure, no new faults are introduced
into the code. This is known to be never
applicable in practice, as most of the
failures are result of complex
interaction between many parts of the
system. Nevertheless how good the
architecture is, developers rarely may
predict what will happen when they
make changes into the code, in order to
fix the failure. The typical, current
solution is to introduce additional
testing procedures and architectural
decisions, to verify that the new code
will execute with no failures.

(2) Aging – generally speaking, software
code does not wear out and most
reliability models assume so. However
some abstract notions of software aging
should be taken into account. For
instance, the execution environment
may change while the system is running
– new software may be installed or also
shut down, memory leaks may occur, or
malicious attacks may take place. Other
examples include systems that are going
to be used for a long time and their core
business logic may appear to be written
using an outdated programming
language and/or technology.

(3) Next issue is that black-box reliability
models assume that failures in the
software system occur following a

International Scientific Conference “UNITECH 2017” – Gabrovo II-340

particular a probability distribution.
Thus probability of failure may be
calculated with well-known
mathematical formulas [10]. This way a
single model is seldom appropriate for a
large range of systems, because each
system has its own failure behavior,
which may differ from the distribution
assumed by the model. In such a case,
the model will give biased estimation
about reliability. An approach to deal
with this problem and select a reliability
growth model is shown in [11].

(4) Software system under-estimation – as
mentioned earlier in the paper, software
reliability is defined as a continuity of a
correct service and may be measured in
percentage or time between failures.
The output of reliability models is either
estimation of mean time between
failures or probability that the system
will behave as per specification over
some desirable time interval. However,
none of the models take into account
that an absolutely correct mathematical
estimation of reliability is not really
practically needed. Rather, it would be
enough that the system is not over-
estimated, i.e. it will not crash earlier
than predicted.

CONCLUSION

The paper describes a pattern of a
methodology for evaluation of reliability of
complex software intensive systems. Practical
significance of this pattern is that it may be
applied when it is uncertain if the system is
ready to be released to the market.

Directions for future research include:
• Generalization of the pattern for larger

number of quality characteristics.
• Improvement of the pattern in order to

cope with problems inherent for
software reliability estimation models

• Development of formal model for
reliability estimation based on experts’
opinion.

ACKNOWLEDGEMENT

Research, presented in this paper was
partially supported by the DFNI I02-2/2014
(ДФНИ И02-2/2014) project, funded by the
National Science Fund, Ministry of Education
and Science in Bulgaria.

REFERENCE
[1] ISO standard on System and software quality

models, Cabral, available at
https://www.iso.org/obp/ui/#iso:std:iso-
iec:25010:ed-1:v1:en

[2] Bachmann, F., L. Bass and R. Nord.
Modifiability Tactics. Technical Report
CMU/SEI-2007-TR-002, September 2007.

[3] OASIS Web Services Quality Factors Version
1.0, available at http://docs.oasis-
open.org/wsqm/WS-Quality-
Factors/v1.0/cos01/WS-Quality-Factors-v1.0-
cos01.html

[4] Fenton N. Software Metrics — A Rigorous
Approach. Chapman & Hall, London, 1991.

[5] Avižienis, A., Laprie, J-C., Randell, B., Basic
concepts and Taxonomy of dependable and
secure computing, IEEE Trans on Dependable
and Secure computing, Vol. 1, Issue 1, Jan -
March 2004.

[6] Dimov, A., S. Chandran and S. Punnekkat
(2010). How do we collect data for software
reliability estimation?. In proc. of of the 11th
international conference on Computer systems
and technologies (CompSysTech 2010), 155-
160, ACM ICPS, vol. 471, Sofia, Bulgaria.

[7] Myers G., et all, The art of software testing,
John Wiley & Sons, New York, 2004

[8] Arun Babu, P., C. Senthil Kumar, and N.
Murali. "A hybrid approach to quantify software
reliability in nuclear safety systems." Annals
of Nuclear Energy 50 (2012): 133-140.

[9] Butler, R., and Finelly, G., (1993), The
infeasibility of quantifying the reliability of
life-critical real-time software. IEEE
Transactions on Software Engineering. 1(19),
3-12.

[10] Farr, W., (1996). Software reliability modeling
survey. In: M.R. Lyu (Ed.), Handbook of
Software Reliability Engineering, 71–117,
McGraw-Hill, New York.

[11] Stringfellow, C., Andres, A. Amschler, An
empirical method for selecting software
reliability growth models, Empirical Sotware
Engineering, Vol.7, Issue 4, pp.319-343,
2002.

[12] Goseva-Popstojanova, K., Hamill, M., and
Xuan Wang, (2006). Adequacy, Accuracy,
Scalability, and Uncertainty of Architecture-
based Software Reliability: Lessons Learned
from Large Empirical Case Studies, In
Proceedings of the 17th International
Symposium on Software Reliability
Engineering, 197-203.

[13] Chandran, S., A. Dimov and S. Punnekkat.
(2010). Modeling Uncertainties in the
Estimation of Software Reliability – a
Pragmatic Approach. Proceedings of the 4th
IEEE International Conference on Secure
Software Integration and Reliability
Improvement (SSIRI). Singapore. June 9-11,
2010. 227-236.

	introduction
	RELIABILITY MODELING METHODS
	RELIABILITY ESTIMATION PATTERN
	discussion
	Conclusion
	Acknowledgement
	REFERENCE

