
International Scientific Conference “UNITECH 2017” – Gabrovo II-240

INTERNATIONAL SCIENTIFIC CONFERENCE
17-18 November 2017, GABROVO

STATIC MULTI-STREAM WORD-BASED COMPRESSION ALGORITHM

Emir ÖZTÜRK

emirozturk@trakya.edu.tr
Computer Engineering Department

Trakya University – Edirne / TURKEY

Altan MESUT
altanmesut@trakya.edu.tr

Computer Engineering Department
Trakya University – Edirne / TURKEY

Abstract
In this paper, we present a static lossless word based compression algorithm (MWCA-S) for text files. MWCA-S is

the static version of MWCA, which is a semi-static word based compression algorithm. MWCA-S identifies the symbols
to be compressed as words. The dictionary consists of words extracted from previously acquired languages. The
MWCA-S splits the original file into 4 parts according to word frequencies similar to the MWCA. The language must be
given as a parameter in compression state. MWCA-S obtains 4.32 bpc at best and 5.3 bpc on average. Although the
compression ratios are worse than the MWCA, compression is 3.8 times faster than the MWCA on average in terms of time.

Keywords: Text Compression, Static compression, MWCA, MWCA-S.

INTRODUCTION

As the big data getting popular, processing
data and reduction of data size has become an
important field. With the help of compression,
data can be stored using less disk space. Text
compression can be defined as representing
text data in less space using redundancy within
[1]. Also, higher transfer rates can also be
achieved with text compression.

Three different models can be used in data
compression; static, semi-static and dynamic.
Semi-static algorithms perform a first pass
over the text to obtain information about the
content, and then perform the encoding
according to this information in the second
pass. Unlike semi-static algorithms, static
algorithms don’t need a first-pass to obtain
frequency information. Compression is made
using the previously created dictionaries.
These methods are faster but their compression
ratios are worse than semi-static ones since
they use dictionaries which are not source-
specific. Dynamic model uses source-specific
dictionary like semi-static model and perform
compression in one pass like static model.
These methods update the dictionary
information while compressing.

To compress text files, general compression
algorithms like LZ77 [2], LZ78 [3], LZW [4],
LZMA [5], Deflate [6], PPM family (PPMa,

PPMb, PPMd) [7] could be used. Word based
semi-static algorithms like ETDC [8], SCDC
[9] and dynamic versions of them, which are
DETDC [10], DSCDC, DLETDC and
DLSCDC [11] could also be used.

In this study, MWCA-S (Static Multi-
Stream Word-Based Compression Algorithm)
which is a word based compression algorithm
based on MWCA [12] is proposed. Like
MWCA, MWCA-S provides multi-stream
structure and compressed matching. Created
streams could be either stored as seperate files
or a single file. Because MWCA-S is a static
compression algorithm, it compresses the text
in one pass. The file is divided into 4 different
streams according to the codes given. In this
study, the MWCA-S algorithm was tested for
eight different languages and compared with
the MWCA algorithm. The two-letter code
(de, en, es, fr, it, pl, nl, tr) is given as a
parameter for selecting the desired language.

MWCA static algorithm is explained in the
second section, and the performance results
are examined in the third section.

MWCA-S
The MWCA-S compression algorithm is a

static version of the MWCA algorithm. The
semi-static MWCA acquires the words and
their frequencies in the first-pass, sorts these

 2017

International Scientific Conference “UNITECH 2017” – Gabrovo II-241

words according to these frequencies in
descending order and creates the D1 and D2
dictionaries containing the first 255 and the
next 65536 words. In the second pass, coding
is performed using these dictionaries and two
different streams are generated (S1 and S2). If
the encoded word is not in these dictionaries, it
will be stored in S3 stream. It also uses a bit
vector (BV) to help the decoder for choosing
the appropriate dictionary. As a result, the
output of MWCA has six different streams,
including D1 and D2.

In the developed static MWCA version, the
first pass operation is not performed and static
dictionaries are used. The use of static
dictionaries and the absence of the first pass
phase increase the compression speed, but the
compression ratio is expected to decrease
because of the use of fixed dictionaries.

In order to create static dictionaries, the
most common words were collected from the
files retrieved from the internet in eight
different languages. The first 255 + 65536 of
these words were used to construct the D1 and
D2 dictionaries for each language.

MWCA-S uses the spaceless word model
[13] which labels all non-alphanumeric
characters as punctuation. A character group
(word) consists of characters from the same
type. The encoding algorithm generates a word
until it encounters a character that is different
from the characters being read. If the word is
found in the dictionary, the frequency is
increased. The space after an alphanumeric
group is not encoded. When decompression,
the algorithm looks for the word if it is
"alphanumeric" or "punctuation". If two
alphanumeric groups are read from the
compressed streams sequentially, the
decompression algorithm writes a space
character between them when writing their
uncompressed forms to the output file.

MWCA-S writes coded words in three
different streams like MWCA. The first stream
(S1) contains the one-byte code equivalents of
the words in the first dictionary (D1), while
the second stream (S2) contains the two-byte
codes of the words in the second dictionary
(D2). The third stream (S3) keeps words that
are not found in the dictionaries. The encoder
writes the length of the word before saving this

word because there will not be a letter to use
as a separator if the source file contains all the
ASCII characters.

As we mentioned before, the encoding
algorithm also generates a bit vector (BV) to
indicate which dictionary must be used to
decode the next word. In BV, "0" bit is used
for words in D1, while "1" bit is used for
words in D2.

When compressing files, the language of
the files must be given as a parameter.
MWCA-S compresses files according to these
dictionaries. The pseudo-code of the MWCA-
S encoding algorithm is given in Figure 1.

1. Get the first 255 words for the first dictionary

2. Get the next 65536 words in 255 words for the
second dictionary

3. Read an alphanumeric or punctuation group from
the file

4. Search C(Wi) code in dictionaries

5. If Wi is in one of the dictionaries

6. Write '0' or '1' to BV according to dictionary

7. Write C(Wi) to S1 or S2 according to
dictionary

8. If Wi is not in one of the dictionaries

9. Write '0' bit to BV

10. Write "0" byte to S1

11. Write length(Wi) and Wi to S3

12. Repeat steps 3-11 until end of file

Fig. 1. MWCA-S encoding algorithm

In decompression, a bit (BVi) is read from
BV. If the BVi is "0", one-byte code is read
from S1. If S1i ≠ "0", the word corresponding
to the code is read from the dictionary and
written to the output file. If S1i = "0" then the
decompression algorithm accepts this as an
escape situation. It reads a word from S3 and
writes it to the output file. If BVi is "1", a two-
byte code is read from S2. Then the word
corresponding to the code will be found in D2
and written to the output file. The opening
phase continues until the end of BV. The
pseudo-code of the MWCA-S decoding
algorithm is given in Figure 2.

International Scientific Conference “UNITECH 2017” – Gabrovo II-242

1. Define PW and CW as 'previous word' and 'next
word'

2. PW = 0, CW = 0

3. Read a bit from BV

4. PW = CW

5. If BV is '0'

6. Read a byte from S1

7. If the byte is "0"

8. Read a word from S3 (W)

9. Else

10. Find the corresponding word in D1 (W)

11. If BV is '1'

12. Read 2 bytes from S2

13. Find the corresponding word in D2 (W)

14. If (W) is alphanumeric, CW = 0

15. If (W) is punctuation, CW = 1

16. If CW = 0 and PW = 0 add a space character to the
output file

17. Write W to output file

18. Repeat steps 3-17 until the end of BV
Fig. 2. MWCA-S decoding algorithm

COMPARISON AND PERFORMANCE
RESULTS

For comparison, a corpus was prepared
using Wikipedia articles collected in eight
different languages. The languages and sizes
of the Wikipedia articles used are given in the
Table 1.

Table 1. The files and sizes that Wikipedia articles

store according to their language

File Name Size (Byte)

de (German) 5,030,246,082

en (English) 11,838,929,073

es (Spanish) 2,818,814,073

fr (French) 3,318,542,670

it (Italian) 2,367,208,876

nl (Dutch) 1,447,569,624

pl (Polish) 1,376,809,649

tr (Turkish) 2,130,928,293

The results for these languages are obtained
in terms of compression ratios and
compression/decompression speeds for both
MWCA and MWCA-S. Compression ratios in
bpc are given in the Table 2.

Table 2. MWCA compression ratios (bpc)

Files MWCA MWCA-S Zlib

de 3.53 6.54 3,09

en 3.07 4.76 2,98

es 3.12 5.06 2,87

fr 3.20 5.36 2,86

it 3.12 4.32 2,98

nl 3.00 4.59 2,58

pl 3.59 5.31 3,09

tr 4.47 6.49 3,60

Average 3.39 5.30 3,01

As shown in Table 1, MWCA semi-static
produces better compression ratios than the
static version because it creates and uses
different dictionaries for each file. The best
result was obtained in “nl” with 3.00 bpc.
MWCA-S gets the best result in “it” with 4.32
bpc. Zlib achieves best results in all languages.
Compression and decompression speeds for
MWCA and MWCA-S are given in the Table
3.

Table 3. MWCA compression - decompression

speeds (Mbps)
Files Semi-Static Static Zlib

Comp. Decomp. Comp. Decomp. Comp. Decomp.
de 16.68 76.83 59.14 91.36 12,38 180,84
en 16.84 82.69 65.50 103.74 12,12 190,23
es 17.11 86.32 64.59 102.55 10,25 195,85
fr 17.64 91.47 62.94 99.87 11,19 198,52
it 16.62 88.99 65.63 107.76 12,26 193,16
nl 16.98 96.76 69.21 113.08 16,32 190,73
pl 16.89 89.35 62.11 102.22 10,78 199,26
tr 14.90 74.21 49.10 78.68 12,19 163,71
Avg. 16.71 85.83 62.28 99.91 12,19 189,04

Since the semi-static MWCA algorithm has
two passes, it performs slower compression
than the static MWCA method. The MWCA-S
method does not include the first pass, which

International Scientific Conference “UNITECH 2017” – Gabrovo II-243

contains word and frequency extraction, code
assignment to words, and dynamic memory
management operations used to store these
words. Since the same operations are
performed in the decompression algorithm, no
significant difference is obtained. Both semi-
static and static MWCA implementations are
faster than Zlib at compression.

CONCLUSIONS

The MWCA algorithm can be used as semi-
static (MWCA) and static (MWCA-S). The
static algorithm provides faster compression
because it performs a single pass, while the
semi-static algorithm achieves better
compression ratios by creating a file-specific
dictionary.

In the static algorithm, dictionary selection
requires a parameter to determine the language
of the current file. The MWCA-S offers 46%
space savings at best. This gain was 34% on
average. MWCA-S can be used if speed is
required and MWCA can be used to save more
space. Zlib is better than MWCA at
compression, but lacks of compressed
matching offered by MWCA.

REFERENCES
[1] Bell, T.C., Cleary, J.G., Witten, I.H.: Text

compression. Prentice-Hall, Inc. (1990)
[2] J.Ziv, A.Lempel: A Universal Algorithm

for Data Compression. IEEE Trans. Inf.
Theory. I, (1977)

[3] Ziv, J., Lempel, A.: Compression of

Individual Sequences via Variable-Rate
Coding. IEEE Trans. Inf. Theory. 24, 530–
536 (1978). doi:10.1109/TIT.1978.1055934

[4] Welch, T.A.: A techinique for high-
performance data compression. IEEE
Comput. (1984)

[5] LZMA Specification,
https://github.com/jljusten/LZMA-
SDK/blob/master/DOC/lzma-
specification.txt

[6] Deutsch, L.P.: DEFLATE compressed data
format specification version 1.3. (1996)

[7] Cleary, J., Witten, I.: Data compression
using adaptive coding and partial string
matching. IEEE Trans. Commun. 32, 396–
402 (1984)

[8] Navarro, G., Brisaboa, N.R.: ETDC.
[9] Brisaboa, N.R., Fariña, A., Navarro, G.,

Esteller, M.F.: (S,C)-Dense Coding: An
Optimized Compression Code for Natural
Language Text Databases. 10th Int. Symp.
String Process. Inf. Retr. 122–136 (2003).
doi:10.1007/978-3-540-39984-1_10

[10] Brisaboa, N.R., Farina, A., Navarro, G.,
Parama, J.R., Fariña, A., Navarro, G.,
Parama, J.R.: New adaptive compressors
for natural language text. Softw. Pract. Exp.
38, 1429–1450 (2008). doi:10.1002/spe.882

[11] Brisaboa, N., Farina, A., Navarro, G.,
Paramá, J., Fariña, A., Navarro, G., Paramá,
J.: Dynamic lightweight text compression.
ACM Trans. Inf. Syst. 28, 1–32 (2010).
doi:10.1145/1777432.1777433

[12] Öztürk, E., Mesut, A., Diri, B.: Multi-
Stream Word-Based Compression
Algorithm. In: UBMK2017 (2017)

[13] Moffat, A.: Word-based text compression.
Softw. Pract. Exp. 19, 185–198 (1989)

	introduction
	CONCLUSIONs
	REFERENCEs

