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Abstract 
Time-of-Flight (ToF) cameras have become critical instruments in applications demanding real-time 3D depth 
sensing, such as robotics, augmented reality, and industrial inspection. However, the accuracy of ToF cameras, 
including models such as the CamBoard pico flexx, is frequently compromised by depth inaccuracies arising 
from various noise sources. To mitigate these issues, this study investigates the performance of five established 
filtering techniques: the Wiener filter, Non-Local Means (NLM) filter, Gaussian filter, Bilateral filter, and 
Median filter. These methods were applied to depth data captured by the CamBoard pico flexx. The paper 
presents experimental results demonstrating the effectiveness of each filter in improving the quality of depth 
maps. Prior studies are referenced to provide additional context for the filtering methodologies employed in ToF 
camera systems. 
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1. INTRODUCTION
Time-of-Flight (ToF) cameras are rapidly 
evolving, offering high frame rate 3D depth 
and amplitude imaging in a compact, 
lightweight package. These attributes make 
them ideal for applications such as ground 
robot navigation, 3D object reconstruction, 
and human organ tracking [1, 2, 3]. 
However, ToF cameras are not immune to 
inaccuracies, often caused by noise from 
the imaging environment, such as ambient 
light, reflectivity of surfaces, or sensor 
limitations [4, 5]. These inaccuracies can 
lead to significant challenges in obtaining 
precise depth measurements, and correcting 
them requires robust image processing 
techniques [6]. 
Filtering techniques are employed to reduce 
noise while preserving important depth 
details. Various filters, including the 
Median filter, Bilateral filter, Gaussian 
filter, Non-Local Means filter, and Wiener 
filter, have been developed and widely 
adopted in the field of ToF imaging [7, 8]. 
Each filter has its strengths and weaknesses, 
and their suitability depends on the specific 

challenges encountered in different 
applications [9]. 

2. DEVELOPMENT AND PRINCIPLE
OF TOF CAMERAS 
ToF technology calculates the distance 
between the camera and an object by 
measuring the time taken for light to reflect 
off the surface of the object and return to 
the camera sensor [10]. This time delay 
provides depth information, which can be 
used to generate a 3D map of the 
environment. ToF cameras have become 
highly popular due to their capability to 
provide accurate depth measurements in 
real-time [11, 12]. 
The CamBoard pico flexx, for example, 
uses continuous wave ToF technology, 
emitting modulated infrared light and 
measuring the phase shift of the reflected 
signal to calculate depth [13, 14]. This 
system is prone to various noise sources 
that can degrade the quality of the depth 
map, including ambient light interference 
and reflective material properties [15, 16]. 
Effective noise reduction strategies, such as 
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applying image filters, can significantly 
enhance the accuracy of the depth data. 
 
3. ANALYSIS OF DEPTH 
INACCURACIES IN TOF CAMERAS 
Depth inaccuracies in ToF cameras are 
categorized into systematic and non-
systematic errors. Systematic errors can be 
corrected relatively easily, as they follow a 
consistent pattern. However, non-
systematic errors, such as those caused by 
noise and environmental factors, require 
more sophisticated approaches to mitigate 
[17]. 
In previous research, non-systematic errors 
have been attributed to factors such as 
signal-to-noise ratio (SNR), multiple light 
reception, light scattering, and motion 
blurring [18, 19]. Low amplitude filtering, 
along with advanced algorithms, has been 
shown to reduce noise and improve depth 
accuracy [20]. Filtering techniques that 
balance edge preservation with noise 
reduction are essential to mitigating these 
non-systematic errors, as demonstrated in 
our experiments with the CamBoard pico 
flexx [21]. 
 
4. ANALISIS ON FILTERING 
TECHNIQUES FOR TOF CAMERA 
DATA 
This section presents an analysis of five 
commonly used filters, applied to depth 
data from the CamBoard pico flexx. Each 
filter is tested under controlled conditions 
to evaluate its performance in reducing 
noise while maintaining edge sharpness. 
4.1 Wiener Filter 
The Wiener filter minimizes the mean 
square error between the filtered depth map 
and the original image. This filter is 
adaptive, adjusting based on local noise 
levels, but tends to blur edges [22]. In 
experiments with the CamBoard pico flexx, 
the Wiener filter was found to effectively 
reduce random noise, but at the cost of edge 
sharpness. 
4.2 Non-Local Means (NLM) Filter 
The Non-Local Means filter averages pixels  

based on their similarity, rather than 
proximity, preserving textures and fine 
details [23]. This makes it ideal for depth 
maps with complex structures, although it is 
computationally expensive. In tests with the 
CamBoard pico flexx, the NLM filter 
provided superior edge preservation, but at 
a high computational cost. 
4.3 Gaussian Filter 
The Gaussian filter applies a weighted 
average to smooth the image, effectively 
reducing high-frequency noise. However, it 
also blurs fine details and edges, making it 
less suitable for applications requiring high 
precision [24, 25]. The filter performed 
moderately well in reducing noise in the 
depth maps generated by the CamBoard 
pico flexx, but sharp depth transitions were 
lost. 
4.4 Bilateral Filter 
The Bilateral filter combines spatial and 
intensity information to smooth the image 
while preserving edges. This filter is 
particularly effective in maintaining depth 
discontinuities, making it ideal for object 
recognition tasks [26, 27]. In our tests, the 
Bilateral filter produced high-quality depth 
maps with minimal noise and clear edges. 
4.5 Median Filter 
The Median filter replaces each pixel value 
with the median of its neighbors, preserving 
edges while removing isolated noise (such 
as flying pixels) [28]. This filter was highly 
effective in reducing noise in noisy 
environments, such as those with reflective 
surfaces, as seen in the CamBoard pico 
flexx tests. 
 
5. EXPERIMENT RESULTS 
In this section, we describe the setup and 
results from applying various filtering 
techniques to depth data captured by a 
Time-of-Flight (ToF) camera. The 
experiment was conducted in a controlled 
indoor environment with objects of varying 
textures, reflectivity, and shapes to test the 
effectiveness of each filter in handling 
depth inaccuracies. 
5.1 Experimental Setup 
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Fig. 1 Experimental Setup 

 
The test environment consisted of a diverse 
arrangement of objects to represent 
different real-world challenges for depth 
sensing. The scene, as shown in Figure 1, 
was carefully selected to include the 
various elements: 
5.2 Experiment Results 
In our experiments, each filter was applied 
to depth data captured by the CamBoard 
pico flexx at distances of 1 meter, 1.5 
meters, and 2 meters. The filters were 
evaluated based on noise reduction, edge 
preservation, and depth accuracy. 
5.3 Wiener Filter 
The Wiener filter was tested at 1 meter, 1.5 
meters, and 2 meters. 
Noise Reduction: The Wiener filter reduces 
noise effectively at greater distances. At 1 
meter, noise is moderately controlled but 
more visible near the boundaries. At 1.5 
meters and 2.5 meters, noise reduction 
improves, particularly in flat regions, 
though some residual noise remains near 
the image edges. 
Edge Preservation: The filter struggles with 
edge preservation, blurring object 
boundaries at all distances. The blurring 
worsens with increased distance, making it 
harder to distinguish between objects, 
especially at 2 meters. 
Depth Accuracy: Depth transitions are 
smooth but less accurate around objects due 
to edge blurring. Depth maps are generally 
accurate in terms of distance representation 
but lack sharpness in detail. 
Outliers/Flying Pixels: Outliers decrease 
with distance, though scattered pixels 
remain, especially near depth 
discontinuities. 
Overall Assessment: The Wiener filter 
provides strong noise reduction while 
adapting to local image variance. However, 

it struggles with edge preservation, 
especially at greater distances. It is well-
suited for scenarios where noise reduction 
is prioritized over maintaining sharp object 
boundaries. 
 

 
Fig. 2 Depth Map at 1 Meter with Wiener Filter 
 
5.4 Non-Local Means (NLM) Filter 
The Non-Local Means (NLM) filter was 
applied to depth maps at 1 meter, 1.5 
meters, and 2 meters. 
Noise Reduction: The NLM filter excels in 
noise reduction, especially in preserving 
textures while reducing random noise. At 1 
meter, noise is effectively reduced while 
maintaining the structural details of objects 
such as the guitar and shelves. At 1.5 
meters, noise reduction continues to 
perform well, but some fine details are lost 
in comparison to shorter distances. By 2 
meters, the filter still manages to control 
noise effectively, though minor noise 
artifacts can be observed near the 
boundaries. 
Edge Preservation: Edge preservation is a 
key strength of the NLM filter. Even at 2 
meters, edges around objects such as the 
guitar remain relatively sharp compared to 
other filters. At 1 meter, object contours are 
well-defined, with clear transitions between 
objects and their background. As distance 
increases, the edges begin to soften slightly 
but remain distinguishable. 
Depth Accuracy: The NLM filter provides 
accurate depth values at all distances. At 1 
meter, the depth map shows well-defined 
transitions between the objects and  
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background. At 1.5 meters, depth 
transitions remain smooth but with slight 
blurring of object details. At 2 meters, 
depth representation remains fairly 
accurate, though some areas exhibit slight 
loss of sharpness, particularly around 
complex shapes. 
Outliers/Flying Pixels: Outliers and flying 
pixels are significantly reduced by the 
NLM filter. At all distances, there are 
minimal instances of scattered pixels, 
especially compared to the Wiener filter. 
This results in cleaner depth maps with 
fewer artifacts disrupting the scene. 
Overall Assessment: The Non-Local Means 
filter excels in both noise reduction and 
edge preservation, offering fine detail 
retention even at greater distances. It is 
particularly suitable for applications that 
demand high precision and detail but may 
not be ideal for real-time applications due 
to its computational cost. 
 

 
Fig. 3 Depth Map at 1 Meter with NLM Filter 

 
5.5 Gaussian Filter 
The Gaussian filter was applied to depth 
maps at 1 meter, 1.5 meters, and 2 meters. 
Noise Reduction: The Gaussian filter is 
effective at smoothing high-frequency 
noise, providing a clear, consistent 
reduction in noise across all distances. At 1 
meter, it successfully reduces random noise 
but begins to blur some fine details, such as 
the edges of the guitar and shelf. As the 
distance increases to 1.5 meters and 2 
meters, the noise reduction remains 
effective, but this comes at the cost of even 
greater blurring of edges and finer object 
details. 

Edge Preservation: One of the limitations of 
the Gaussian filter is its tendency to blur 
edges, which is evident at all distances. At 
1 meter, the contours of objects, such as the 
guitar, are noticeably less sharp. At 1.5 
meters, the edges are further softened, and 
by 2 meters, some objects begin to lose 
their distinct outlines entirely. This makes 
the Gaussian filter less suitable for 
scenarios where edge preservation is 
crucial. 
Depth Accuracy: While the Gaussian filter 
performs well in producing smooth depth 
transitions, it lacks precision in depth 
accuracy at greater distances. At 1 meter, 
depth transitions are well-maintained but 
slightly blurred. By 1.5 meters and 2 
meters, the depth representation becomes 
less precise, particularly in areas with 
complex structures or abrupt depth changes. 
Outliers/Flying Pixels: The Gaussian filter 
handles outliers and flying pixels 
effectively, resulting in relatively clean 
depth maps. Across all distances, minimal 
isolated pixels are observed, contributing to 
smoother and more visually consistent 
depth data. 
Overall Assessment: The Gaussian filter 
effectively reduces noise but tends to blur 
edges, especially as the distance increases. 
It is ideal for applications where general 
smoothing is needed, but edge detail is less 
critical, making it less suitable for precise 
depth mapping. 
 

 
Fig. 4 Depth Map at 1 Meter with Gaussian 

Filter 
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5.6 Bilateral Filter 
The Bilateral filter was applied to depth 
maps at 1 meter, 1.5 meters, and 2 meters. 
Noise Reduction: The Bilateral filter 
effectively reduces noise across all 
distances while preserving edge details. At 
1 meter, it manages to suppress noise 
without introducing significant blurring, 
which is particularly noticeable in the sharp 
outlines of the guitar and shelf. As the 
distance increases to 1.5 and 2 meters, noise 
reduction remains consistent, with the filter 
performing well to maintain clarity across 
the scene. 
Edge Preservation: The Bilateral filter 
excels at edge preservation, which is a key 
strength over other filters. At 1 meter, edges 
around objects like the guitar remain crisp 
and well-defined, with minimal blurring. 
Even at 1.5 meters and 2 meters, the filter 
continues to maintain the integrity of edges, 
making it a good choice for depth data that 
requires both noise reduction and edge 
detail preservation. 
Depth Accuracy: The filter provides good 
depth accuracy at all tested distances. At 1 
meter, the depth transitions are smooth, and 
the fine details are preserved without 
noticeable distortion. At 1.5 meters and 2 
meters, depth accuracy remains high, with 
clear distinctions between foreground and 
background elements. 
Outliers/Flying Pixels: The Bilateral filter 
also handles outliers effectively. Across all 
distances, there is minimal occurrence of 
flying pixels or depth outliers, resulting in 
cleaner, more accurate depth maps. 
Overall Assessment: The Bilateral filter 
strikes an excellent balance between noise 
reduction and edge preservation. It 
performs well in depth accuracy and is 
especially suitable for scenarios where 
preserving edge details is crucial. 

 
Fig. 5 Depth Map at 1 Meter with Bilateral 

Filter 
 
5.7 Median Filter 
Noise Reduction: The Median filter 
effectively handles impulse noise, 
particularly at closer distances. At 1 meter, 
the filter eliminates much of the noise 
without losing important image details. As 
the distance increases to 1.5 meters and 2 
meters, the Median filter continues to 
perform well in removing noise; however, a 
slight reduction in depth data precision 
becomes evident at longer distances due to 
increased pixel variance. 
Edge Preservation: At all distances, the 
Median filter preserves sharp edges better 
than linear filters, making it suitable for 
ToF camera applications where object 
contours and boundaries are critical. At 1 
meter, edges such as those of the guitar and 
shelf remain well-defined. As the distance 
extends to 1.5 meters and 2 meters, edge 
sharpness holds, although minor 
degradation appears in more distant objects 
due to increasing depth complexity. 
Depth Accuracy: The Median filter 
maintains good depth accuracy across all 
distances. At 1 meter, depth data is reliably 
captured with minimal distortion. At 1.5 
meters and 2 meters, depth accuracy begins 
to degrade slightly, but overall, the filter 
performs consistently in maintaining 
accurate depth values across a range of 
distances. 
Outliers/Flying Pixels: The filter 
significantly reduces outliers and flying  
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pixels, particularly at closer distances. At 1 
meter, there are few outliers, while at 1.5 
meters and 2 meters, there is a slight 
increase, though the effect remains 
minimal, maintaining a clean depth map 
overall. 
Overall Assessment: The Median filter is 
highly effective in reducing noise while 
preserving edges and maintaining depth 
accuracy. It performs well at all distances, 
particularly in scenes where edge 
preservation is crucial, making it suitable 
for various ToF camera applications. 
 

 
Fig. 6 Depth Map at 1 Meter with Median 

Filter 
 
6. CONCLUSION 
A common concern with mentioned filters 
is whether they create artificial pixels that 
distort the depth map. While these filters do 
not generate entirely new or nonexistent 
data, they do modify the values of existing 
pixels, often by averaging or smoothing 
them, especially in areas affected by noise. 
This modification can result in artifacts, 
such as blurring or altering the sharpness of 
edges, which may reduce depth accuracy. 
The Wiener and Gaussian filters, in 
particular, are prone to blurring fine details, 
which may give the impression that depth 
transitions are less accurate due to the 
smoothing effect. On the other hand, filters 
like the Non-Local Means and Bilateral 
filters are designed to preserve edges and 
maintain higher accuracy, though at the cost 

of higher computational requirements. The 
Median filter, while excellent for removing 
isolated noise, can occasionally oversmooth 
areas, especially at longer distances, which 
might affect depth precision. 
Overall, the choice of filter depends largely 
on the application’s requirements—whether 
it’s reducing noise, maintaining edge 
precision, or processing depth data with 
high computational efficiency. Combining 
these filtering methods based on specific 
application needs could further optimize 
ToF camera data quality . 
Our study demonstrates that the Bilateral 
and Non-Local Means filters provide the 
best balance between noise reduction and 
edge preservation, but they come with 
higher computational costs. The Median 
filter is particularly useful in scenarios 
where flying pixels are present, offering a 
robust solution for removing isolated noise 
while maintaining edge detail. For real-time 
applications where computational 
efficiency is critical, the Wiener and 
Gaussian filters are preferred despite their 
limitations in edge preservation . 
Future research should focus on developing 
hybrid filters that can leverage the strengths 
of multiple filtering techniques, further 
enhancing the quality of ToF depth data. 
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