
PERFORMANCE ANALYSIS OF CHROMA, QDRANT, AND FAISS
DATABASES

Emir Öztürk*, Altan Mesut
Engineering Faculty Trakya University Edirne, Turkey

* Corresponding author: emirozturk@trakya.edu.tr

Abstract
The complexity and dimensions of deep learning models are increasing. Along with the growing complexity,

vector databases have been proposed to store high-dimensional data required by the models. Vector databases
aim to store high-dimensional vectors and perform similarity calculations on these vectors. In this study, the
insertion and query performances of three different vector databases were measured on datasets of varying
sizes, and the results were examined. The findings indicate that databases stored in main memory, such as Faiss,
provide optimal performance without the need for an index in small-sized datasets and have fast response times.
However, as the data size increases, the advantage diminishes with the increasing main memory requirement,
and the use of Chroma, which provides index support for disk-stored data, becomes more suitable.

Keywords: Chroma, Deep1B, Faiss, Performance Evaluation, Vector databases, Qdrant.

INTRODUCTION
 Deep learning methods have
revolutionized numerous domains,
contributing to the proliferation of
sophisticated models with intricate
architectures and substantial parameter
counts. The advent of large language
models (LLMs) in recent years, fueled by
advancements in deep learning techniques,
has further propelled the complexity and
scale of these models, presenting new
hurdles in the storage and management of
vast amounts of data [1]. LLMs, such as
GPT and BERT, are renowned for their
ability to process and understand natural
language at an unprecedented level,
necessitating innovative approaches to data
organization and indexing [2]. As these
models rely on vector representations of
data rather than direct storage, the shift
towards high-dimensional embeddings has
underscored the importance of efficient data
storage mechanisms and retrieval strategies
in handling increasingly complex datasets.

In addressing these evolving challenges,
vector databases have emerged as pivotal
solutions for effectively managing large-

scale datasets characterized by high-
dimensional embeddings.

Vector databases represent a specialized
class of databases designed to handle high-
dimensional data and facilitate efficient
storage, indexing, and retrieval of vector
representations. In recent years, the
proliferation of deep learning models and
the increasing prevalence of high-
dimensional data have underscored the
importance of specialized solutions for
managing complex datasets. Vector
databases address this need by offering
tailored functionalities to support the
storage and querying of vectorized data,
making them indispensable tools across
various domains.

Vector databases offer numerous
advantages compared to traditional
databases. They excel in efficiently storing
high-dimensional data and enable fast
querying of vector data, making them ideal
for scenarios with large datasets.
Additionally, these databases are optimized
to handle complex, multi-dimensional data
effectively, which traditional databases may
struggle with. They also support scalability,

International Scientific Conference
UNITECH`2024

“UNITECH – SELECTED PAPERS” Vol. 2024
Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under
Creative Commons Attribution 4.0 International

doi: www.doi.org/10.70456/..........................

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1

International Scientific Conference “UNITECH 2024” – Gabrovo

allowing for seamless expansion to
accommodate growing datasets and
increasing query loads. Moreover, vector
databases employ specialized indexing
techniques tailored for high-dimensional
data retrieval, further enhancing their
efficiency.

However, vector databases also pose
certain limitations and challenges.
Implementing and managing them can be
complex, requiring specialized knowledge
of indexing techniques and query
optimization. Indexing high-dimensional
data incurs overhead in terms of storage
space and computational resources,
potentially impacting performance and
scalability. As the dimensionality of the
data increases, the effectiveness of indexing
and querying operations may decrease due
to the curse of dimensionality.
Preprocessing data for storage in vector
format and ensuring consistency may also
add complexity to the data management
pipeline. Achieving optimal performance
often involves trade-offs between storage
efficiency, query speed, and index
maintenance costs.

Despite these challenges, vector
databases find application in various
domains and use cases. They are
indispensable in machine learning for tasks
such as similarity search, clustering, and
classification. In image processing, they
enable content-based image retrieval, object
recognition, and similarity analysis. Natural
language processing applications benefit
from vector databases for tasks like
semantic search, sentiment analysis, and
text summarization. Recommendation
systems leverage these databases for
personalized recommendations and content-
based filtering. Genomics and
bioinformatics rely on vector databases for
sequence alignment, gene expression
analysis, and drug discovery. Geospatial
data analysis benefits from vector databases
for location-based services, route
optimization, and spatial clustering.
Overall, the versatility, efficiency, and
scalability of vector databases make them

essential tools for managing and analyzing
high-dimensional data across diverse
domains and applications.

Unlike conventional relational databases,
vector databases are tailored to
accommodate the unique requirements of
deep learning models, offering specialized
functionalities for storing, indexing, and
querying vectorized data [3]. These
databases empower users to perform
intricate operations such as proximity
detection and similarity searches, enabling
nuanced analysis and retrieval of data
points based on their vector representations.

Despite the relative novelty of vector
database concepts, the landscape has
witnessed a proliferation of diverse
solutions, with numerous databases being
introduced in recent years [4][5]. The rapid
expansion of the vector database ecosystem
underscores the growing demand for
specialized solutions capable of addressing
the unique challenges posed by deep
learning applications [6]. While these
databases share common functionalities at
their core, variations in their underlying
mechanisms can lead to differences in
performance and scalability. In this study,
we focus on evaluating three prominent
open-source vector databases: Chroma,
Qdrant, and Faiss. Each of these databases
boasts an automated indexing mechanism,
streamlining the process of data
organization and retrieval for enhanced
efficiency and usability.

Chroma [7] stands out as a robust vector
database tailored specifically for
accommodating the requirements of large
language models (LLMs). Its versatility
extends beyond mere storage of embedding
vectors; Chroma also facilitates the
integration of metadata alongside these
vectors, enriching the dataset with
contextual information. This metadata
inclusion opens avenues for sophisticated
filtering mechanisms, allowing users to
query based on specific attributes beyond
just similarity metrics.

Qdrant [8], akin to Chroma, presents a
comprehensive solution for storing high-

International Scientific Conference “UNITECH 2024” – Gabrovo

dimensional vectors along with associated
metadata payloads. Its architecture
prioritizes optimization for storage and
retrieval tasks, enabling fast search and
similarity computations even on large-scale
datasets. Moreover, Qdrant offers the
flexibility of operating in both memory and
disk modes, catering to diverse deployment
scenarios. In this study, the performance of
Qdrant was evaluated in both memory and
disk configurations, providing insights into
its adaptability and efficiency across
different environments.

Faiss, a library developed by Meta,
diverges from traditional database
paradigms with its memory-centric
approach. By predominantly retaining data
in memory, Faiss capitalizes on the rapid
access speeds afforded by RAM, ensuring
lightning-fast query responses and
computation times. While Faiss does offer
the capability to persist data to disk when
necessary, its primary mode of operation
revolves around efficiently managing data
within memory. This memory-centric
design choice underpins Faiss's exceptional
performance, especially in scenarios where
real-time responses and minimal latency are
paramount. Furthermore, Faiss boasts
versatility with versions optimized for both
CPU [9] and GPU [10] architectures,
although for this study, the CPU-based
version was employed to maintain
consistency in experimental conditions and
facilitate fair comparisons with other
methodologies.

In the literature, survey studies on vector
databases have been conducted before, but
a performance comparison has not been
done previously.

In [11], authors provide a comprehensive
survey of vector databases, encompassing
storage techniques (sharding, partitioning,
caching, replication), search algorithms
(NNS, ANNS), and challenges in managing
high-dimensional vector data. The authors
delve into the integration of vector
databases with Large Language Models
(LLMs), exploring their potential in various
applications. They emphasize the role of
vector databases in enhancing LLM
capabilities, such as long-term memory,

semantic search, and recommendation
systems. Additionally, the authors discuss
the potential of LLMs to augment vector
database functionalities, including text
generation, augmentation, and
transformation. The survey concludes by
highlighting the significance of retrieval-
based LLMs and illustrating a complex
application of vector database-LLM
synergy in scientific research.

In [12], authors present a concise
overview of vector databases, emphasizing
their role in managing and analyzing high-
dimensional data. The authors detail the
workflow of vector databases, including
indexing (transformation and compression)
and querying (transformation, rough-
comparison, detailed-comparison, and
retrieval). They also elaborate on similarity
search algorithms (K-Means, Locality
Sensitive Hashing, Hierarchical Navigable
Small Worlds, Product Quantization) and
similarity metrics (Euclidean Distance, Dot
Product Similarity, Cosine Similarity) used
in vector databases. The paper concludes by
comparing popular vector database
products (Pinecone, Chroma, Milvus) and
discussing potential future research
directions in this field.

In this study, the insertion and query
performances of three different vector
databases were evaluated using datasets of
various sizes, and the results were analyzed.

In the next section of the study, the
configurations used, and the datasets
created for the experiment are explained. In
the final section, the results are examined.

EXPERIMENT SETUP AND RESULTS

In the study, three different vector
databases, namely Chroma, Qdrant, and
Faiss, were used. Although the databases
also have metadata storage capabilities,
vectors from the Deep1B [13] dataset are
added to these databases without metadata
in order to obtain only dimension and query
results related to vectors. No replication or
partitioning was performed on the
databases. Indexing was performed for each
database along with the added data, and
indexing times were included in the
insertion times. After creating the

International Scientific Conference “UNITECH 2024” – Gabrovo

databases, queries were made for randomly
selected 1000 vectors from the dataset to
measure query performance. In the query,
the parameters of the 10 nearest similar
vectors were selected for each vector. All
databases return the id fields of similar
vectors as query results. An M1 Max
processor with 64 GB of main memory on a
Macbook Pro was used to obtain the timing
results. The memory usage for obtaining
Faiss and Qdrant results does not reach 64
GB. Therefore, no swap operation with disk
is performed in obtaining timing results,
and the entire runtime is obtained in
memory.

To measure the performance of datasets
of different sizes, 10000, 25000, 50000,
100000, 250000, 500000, 1000000,
2500000, 5000000, and 9990000 vectors
from the Deep1B dataset were sequentially
written to the databases, and then similarity
queries were run on these databases.
Default similarity measurement methods of
each database were used in running the
queries. The default method for Chroma is
called "Squared L2." Cosine distance was
selected for Qdrant. For Faiss, the L2
method was again chosen. Database sizes
were obtained to measure the total size of
vectors and indexes and the difference in
access speed for the lost disk space, and are
presented in Figure 1. Database size results
include the entire space occupied by the
data and indexes.

Fig. 1. Database Sizes (MB)

As seen from Figure 1, Chroma and
Qdrant yield similar results in terms of data
size, and the data size gap between them
and Faiss widens as the number of vectors
increases. Since Faiss is primarily kept in
memory by default, the current results
represent the size on disk after Faiss's
writing method is employed.

The insertion times of datasets into the
databases of various sizes are provided in
Table 1. At this stage, since there exists a
version of Qdrant stored in memory, these
results are also obtained and presented
under the name Qdrant (Memory). These
results underscore the importance of
considering both disk-based and memory-
resident configurations when evaluating
database performance, particularly in
scenarios where insertion speed is crucial.

To mitigate the potential impact of total
data volume during insertion, all databases
were reconstructed for each dataset size,
focusing solely on databases containing
vectors of the corresponding size. This
approach ensures that the timing results
accurately reflect the performance of each
database system under consistent
conditions. This procedure guarantees fair
comparisons and eliminates biases
introduced by varying total data amounts
during insertion.

Table 1. Insertion Time Results (s)

Vector
count Chroma Qdrant Qdrant

(Memory) Faiss

10000 5,92 9,06 0,17 0,00
25000 15,30 28,51 0,57 0,00
50000 31,83 60,09 1,20 0,01
100000 67,42 101,80 3,25 0,02
250000 187,25 213,93 25,97 0,05
500000 434,89 354,75 145,74 0,08
1000000 1135,35 1125,20 618,54 0,20
2500000 5438,36 5218,59 3797,58 0,51
5000000 20020,33 19652,34 15206,34 1,31
9900000 62837,93 70091,99 62054,56 4,35

As evident from the insertion times, as

expected, Faiss exhibits much faster
insertion compared to other databases,
attributed to its utilization of RAM. The
current timing results include the time taken
by Faiss to write to disk. However, since

International Scientific Conference “UNITECH 2024” – Gabrovo

the disk writing process is executed in a
single operation, there is no performance
degradation compared to the fragmented
insertion process of other databases. On the
other hand, other databases show increasing
insertion times with growing data volume.
This is primarily due to the expected
growth of the index and the increasing
indexing operations. Unexpectedly, when
Qdrant is run in memory, it demonstrates
similar results to its disk-based counterpart,
showing increased insertion times as the
dataset grows.

All databases accept parameters to
determine the number of different vectors
to search, the number of closest vectors to
return for each searched vector, and
whether to apply filtering within stored
documents if present. As mentioned in
earlier sections of the study, no documents
or metadata were added to the database for
the sole purpose of measuring vector
performance. Therefore, such a filter was
not included in the search queries.

The query times obtained for the
scenario where queries were made for 1000
randomly selected vectors from the dataset
and the id fields of the top 10 similar
vectors were returned as results are
presented in Table 2. This querying
scenario represents a common use case for
similarity search operations and provides
valuable insights into the efficiency of
vector retrieval processes in real-world
applications.

Table 2. Query Time Results (s)

Vector
count

Chroma Qdrant Qdrant
(Memory
)

Faiss

10000 0.288 2.814 2.436 0.007
25000 0.283 4.295 4.071 0.014
50000 0.291 11.566 11.088 0.027
100000 0.299 25.892 24.053 0.056
250000 0.309 64.833 61.433 0.13
500000 0.319 132.442 125.708 0.309
1000000 0.326 285.247 265.843 0.586
2500000 0.34 768.06 729.046 1.479
5000000 0.461 1633.158 1507.977 3.146
9900000 0.443 3042.158 3088.226 6.164

As seen from Table 2, as the data size

increases, Chroma achieves higher

performance compared to Faiss. Chroma
stores the main data on disk, while Faiss
resides entirely in main memory, resulting
in varying performance characteristics.
Since the search time results of Chroma do
not change significantly with the data size,
Chroma has achieved more successful
results than Faiss after 500,000 vectors. On
the other hand, Qdrant and Faiss exhibit
parallel increases in search time results with
the increase in data size. While Qdrant
operates in both memory and disk, it has
similar search times, which

In contrast, both Qdrant and Faiss show
concurrent increases in search time results
as the dataset size expands. Despite
Qdrant's ability to operate in both memory
and disk modes, its search times remain
notably slower compared to other
databases. This suggests that while Qdrant
offers versatility in operational modes, its
performance may lag behind other
databases, especially in larger datasets.

CONCLUSION

Deep learning methods continue to
evolve, pushing the boundaries of
complexity and model sizes even further.
As datasets grow larger and more intricate,
the need for efficient organization and
retrieval mechanisms becomes increasingly
paramount. Vector databases emerge as
indispensable tools in this landscape,
offering tailored solutions for indexing and
querying high-dimensional data.

The versatility of vector databases lies in
their ability to handle diverse data
structures, making them well-suited for the
varied demands of deep learning
applications. From embedding
representations to similarity searches, these
databases provide a robust framework for
managing complex data relationships.

In the study, the exploration of open-
source vector databases such as Chroma,
Qdrant, and Faiss underscores the
importance of tailored solutions for
handling different types and sizes of vector
data. Each database brings its unique set of

International Scientific Conference “UNITECH 2024” – Gabrovo

features to the table, catering to specific
requirements and performance expectations.

While Faiss successes in scenarios where
real-time responses and minimal overhead
are critical, Chroma's disk-based storage
and indexing capabilities offer a compelling
alternative for larger datasets where
memory constraints become a concern.

Looking ahead, future investigations aim
to delve deeper into the nuanced
performance characteristics of these vector
databases across various configurations.
The exploration of sharding, partitioning,
and replication strategies promises to unveil
new insights into optimizing database
performance for evolving deep learning
workloads.

REFERENCE
[1] R. Guo et al., “Manu: A Cloud Native

Vector Database Management System,”
Jun. 2022, [Online]. Available:
http://arxiv.org/abs/2206.13843

[2] T. Taipalus, “Vector database management
systems: Fundamental concepts, use-cases,
and current challenges,” arXiv preprint
arXiv:2309.11322, 2023.

[3] Y. Han, C. Liu, and P. Wang, “A
comprehensive survey on vector database:
Storage and retrieval technique, challenge,”
arXiv preprint arXiv:2310.11703, 2023.

[4] B. Windsor and K. Choi, "Thistle: A vector
database in Rust," Mar. 2023, [Online].
Available: http://arxiv.org/abs/2303.16780

[5] R. Guo et al., "Manu: A cloud native vector
database management system," Jun. 2022,
[Online]. Available:
http://arxiv.org/abs/2206.13843

[6] J. J. Pan, J. Wang, and G. Li, “Survey of
Vector Database Management Systems,”
arXiv preprint arXiv:2310.14021, 2023.

[7] “Chroma: The AI-native open-source
embedding database.” Accessed: Feb. 05,
2024. [Online]. Available:
https://github.com/chroma-core/chroma

[8] Q. Team, “Qdrant: High-performance,
massive-scale Vector Database.” 2020.
[Online]. Available:
https://github.com/qdrant/qdrant

[9] M. Douze et al., “The Faiss library,” 2024.
[10] J. Johnson, M. Douze, and H. Jégou,

“Billion-scale similarity search with
GPUs,” IEEE Trans Big Data, vol. 7, no. 3,
pp. 535–547, 2019.

[11] Y. Han, C. Liu, and P. Wang, "A
comprehensive survey on vector database:
Storage and retrieval technique, challenge,"
Oct. 2023, [Online]. Available:
http://arxiv.org/abs/2310.11703

[12] X. Xie, H. Liu, W. Hou, and H. Huang,
"A Brief Survey of Vector Databases," in
2023 9th International Conference on Big
Data and Information Analytics (BigDIA),
2023, pp. 364-371.

[13] A. Babenko and V. Lempitsky,
“Efficient indexing of billion-scale datasets
of deep descriptors,” in Proceedings of the
IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 2055–2063.

	introduction
	EXPERIMENT SETUP AND RESULTS
	CONCLUSION
	REFERENCE

