
138
International Scientific Conference “UNITECH 2023” – Gabrovo

INTERNATIONAL SCIENTIFIC CONFERENCE
17-18 November 2023, GABROVO

APPLICATION OF LARGE LANGUAGE MODELS AND NATURAL
LANGUAGE UNDERSTANDING IN MULTI-AGENT TOURIST GUIDE

FOR GABROVO

Iliya Iliev Nedelchev

University of Plovdiv “Paisii Hilendarski”

Abstract
This paper explores the integration of Large Language Models (LLM) and Natural Language Understanding

(NLU) within a multi-agent tourist guide for Gabrovo. In the context of the digital transformation of the tourism
industry, this study examines how advanced NLP technologies enhance the tourist experience.

The multi-agent tourist guide, powered by LLM and NLU, delivers personalized recommendations, historical
insights, and real-time assistance to travelers. This research emphasizes the transformative potential of these
technologies in tourism by fostering engagement, promoting cultural immersion, and streamlining navigation.

Furthermore, the study highlights the broader implications of AI-driven language models and understanding
in preserving cultural heritage. By harnessing LLM and NLU, this tourist guide redefines exploration in
Gabrovo and symbolizes a shift in how individuals connect with cultural legacies worldwide.

In essence, this paper underscores the significant impact of technology in reshaping multi-agent tourist
guides, enriching traveler experiences, and preserving cultural identities in destinations such as Gabrovo.

Keywords: natural language understanding, large language models, Rasa, OpenAI ChatGPT.

INTRODUCTION

 The tourism industry stands on the
precipice of a new era, characterized by the
convergence of advanced technology and
the enduring spirit of exploration. In an era
where travelers seek increasingly immersive
and personalized experiences, technology
plays an integral role in reshaping the
manner in which we discover and engage
with destinations. Within this context, we
embark on an exploration of the strategic
integration of Large Language Models (LLM)
and Natural Language Understanding (NLU)
technologies, combined with a robust .NET
6 REST API, to create a multi-agent tourist
guide. This guide is set against the
enchanting backdrop of Gabrovo and its
encompassing region.

Gabrovo, with its illustrious tapestry of
cultural heritage and natural splendor,
provides an ideal canvas for our
comprehensive examination. Here, the
nexus of tradition and innovation is
palpable, mirroring the very essence of our
inquiry. Our objective is to unveil the
transformative potential of LLM and NLU

technologies, orchestrated through a .NET 6
REST API, within the tourism sector. Our
primary focus is on elevating the visitor
experience to uncharted levels of
sophistication.

As an integral component of our case
study, we will harness three pioneering
technologies: Rasa, Jason, and ChatGPT.
Rasa, renowned for its precision in Natural
Language Understanding (NLU) and
dialogue management, serves as the
bedrock of our multi-agent tourist guide,
ensuring unparalleled intent recognition and
the seamless flow of conversation. Jason,
an intelligent agent platform, communicates
efficiently with a .NET 6 REST API,
thereby enhancing the guide's adaptability
and responsiveness to diverse traveler
needs. This REST API, in turn, acts as the
linchpin of our architecture, facilitating
communication between Jason and the
formidable ChatGPT, a Large Language
Model (LLM). ChatGPT enriches our guide
with informative and engaging responses,
culminating in a seamless and immersive
experience for the discerning traveler.

 2023

139
International Scientific Conference “UNITECH 2023” – Gabrovo

The multi-agent tourist guide, fortified
by the capabilities of Rasa, Jason,
ChatGPT, and the orchestrating .NET 6
REST API, stands as a testament to the
symbiotic relationship between technology
and tourism. It not only disseminates
information but fosters engagement,
providing not just directions but cultural
immersion. Throughout the course of this
paper, we will elucidate how these
technologies empower travelers with
personalized recommendations, historical
narratives, and real-time assistance, all
finely tuned to their unique preferences and
requirements.

Beyond the immediate impact on the
tourism landscape, our exploration extends
to the broader implications of AI-driven
language models and understanding,
particularly in the context of cultural
heritage preservation and celebration. Our
findings shed light on how, through the
adept utilization of Rasa, Jason, ChatGPT,
and .NET 6 REST API, the multi-agent
tourist guide redefines the very essence of
exploration in Gabrovo, while
simultaneously establishing a precedent for
how individuals worldwide engage with
and cherish their cultural legacies.

In an epoch defined by technology-
driven transformation, our study of the
multi-agent tourist guide transcends the
realm of scholarly inquiry, serving as a
testament to the evolving dynamics
between travelers, technology, and the
timeless pursuit of discovery. As we
navigate this intricate landscape, we
cordially invite you to accompany us in
unraveling the profound impact of these
cutting-edge technologies and architecture,
ultimately redefining the traveler's
experience and reshaping their connection
with destinations such as Gabrovo.

EXPOSITION

At the core of our mobile application is a
multifunctional tourist guide system
designed to offer travelers an all-
encompassing experience when exploring
Gabrovo. While the application boasts a
wide array of functions, including
navigation, information, and local
resources, the integration of a chatbot and
voicebot enhances its utility.

The application serves as a versatile tool,
catering to a multitude of traveler needs. It
encompasses functionalities such as
navigation assistance, event scheduling,
local cuisine recommendations, and real-
time updates on attractions and events.
Users can access a wealth of information
about Gabrovo's history, culture, and
traditions through an intuitive and user-
friendly interface.

As valuable additions to the mobile
application, the chatbot and voicebot offer a
conversational layer that seamlessly
integrates with the application's broader
functionalities. These AI-driven agents act
as responsive and informative companions,
enriching the traveler's experience with
tailored interactions.

When users access specific menus within
the application, it automatically opens a
conversation mode. This mode provides a
range of features and information about
Gabrovo and its attractions. Travelers can
then initiate inquiries, seek
recommendations, or engage in casual
dialogue to enhance their understanding of
the region.

For those who desire a deeper dive into
Gabrovo's attractions, the system
seamlessly transitions into attraction-
specific conversations. Each attraction has
its dedicated dialogue space, allowing
travelers to explore its history, significance,
and practical information.

A standout feature of our system is its
proactive and location-based approach.
When the user's GPS location is in
proximity to a particular attraction, the
system dynamically opens a conversation
related to that specific attraction. This
responsive behavior enhances user
engagement by delivering contextually
relevant information precisely when it
matters most.

The system leverages two advanced
conversational AI technologies, Rasa and
ChatGPT, in an orchestrated manner. When
a user initiates a conversation or query, the
system first consults Rasa for intent
recognition and dialogue management. If
Rasa determines that the user's query
cannot be adequately addressed, it
gracefully transitions to a fallback strategy,
invoking the ChatGPT API.

140
International Scientific Conference “UNITECH 2023” – Gabrovo

In essence, our mobile application stands
as a comprehensive gateway to Gabrovo,
offering a multitude of functions designed
to enhance every facet of the traveler's
journey. The inclusion of the tourist plan
manager ensures an enriched and
personalized exploration of Gabrovo,
guided by the best of AI-driven
technologies while enjoying the broader
functionality the application offers.

Rasa Open Source is an open source
conversational AI platform that allows you
to understand and hold conversations, and
connect to messaging channels and third
party systems through a set of APIs. It
supplies the building blocks for creating
virtual (digital) assistants or chatbots [1].
With Rasa, developers can build
sophisticated chatbots and virtual assistants
that comprehend user inputs, extract intent
and entities, and engage users in context-
aware conversations.

Key Features:
NLU Engine: Rasa's advanced NLU

engine accurately deciphers user queries,
enabling effective understanding of intent,
entities, and context.

Dialogue Management: It orchestrates
dynamic, rule-based, and machine learning-
driven conversations, going beyond simple
Q&A interactions.

Customization: Rasa's open-source
nature allows developers to customize and
extend the framework, tailoring solutions to
unique requirements.

Thriving Community: A collaborative
global community supports Rasa, sharing
best practices and contributing to its
continuous improvement.

Rasa empowers organizations and
developers to create intelligent, context-
aware chatbots and virtual assistants across
various domains, from customer service to
healthcare, fostering innovation and
adaptability.

Training Rasa models to deliver
intelligent conversations is a pivotal aspect
of our multi-agent tourist guide. To achieve
this, we employ the standard Rasa REST
API for training and inference, but our
unique architecture involves a custom-
developed Flask REST API to facilitate
communication with Rasa agents, each

loaded with separate models tailored for
distinct purposes.

The Flask framework is actually a glue,
a very nice one, that sticks together the
amazing Werkzeug and Jinja2 frameworks,
responsible for answering requests and
presenting the output [2].

Our journey begins with the training of
Rasa models, a critical step in ensuring that
our chatbot and voicebot are well-equipped
to engage users effectively. Rasa's versatile
framework allows us to fine-tune models
for precise intent recognition, entity
extraction, and dialogue management. This
extensive training process empowers our
agents to comprehend a wide range of user
inputs, varying from general queries about
Gabrovo to highly specific questions related
to individual attractions.

The crux of our architecture lies in the
custom Flask REST API, meticulously
crafted to orchestrate communication with
Rasa agents. This API serves as the central
hub through which user requests, inquiries,
and interactions are routed to the
appropriate Rasa model, ensuring a
contextually relevant and accurate response.
Additionally, the Flask REST API
seamlessly communicates with the .NET 6
REST API, which further enhances the
system's capabilities.

Our custom API performs several critical
functions:

Model Loading: It manages the loading
of distinct Rasa models, each designed to
handle specific conversational scenarios.
This separation of models optimizes
responsiveness and accuracy.

Intent Routing: Based on user inputs, the
API intelligently routes requests to the
corresponding Rasa agent. For instance,
general inquiries find their way to the
general conversation model, while
attraction-specific questions are directed to
the relevant attraction-specific model.

Contextual Conversations: The API
maintains context during conversations,
enabling seamless transitions between
general and attraction-specific dialogues.
This ensures that users receive a cohesive
and immersive experience as they navigate
the application.

To cater to the diverse needs of travelers,

141
International Scientific Conference “UNITECH 2023” – Gabrovo

we have implemented multiple Rasa models
within our custom Flask REST API. These
models are specialized for distinct
conversational scenarios:

General Conversation Model: This
model encompasses conversations of a
general nature, offering insights about
Gabrovo, its culture, and broader tourist
information. It is the go-to model for
travelers seeking an overview of the region.

Attraction-Specific Models: In contrast,
attraction-specific models are tailored for
interactions related to individual attractions
in Gabrovo. Each model is dedicated to a
particular attraction, allowing travelers to
engage in in-depth conversations about the
history, significance, and practical details of
the specific site.

This separation of models ensures that

user queries are channeled to the most
relevant Rasa agent, optimizing the
accuracy and depth of responses. This
multifaceted approach enhances the overall
user experience, ensuring that travelers
receive precise and engaging information
throughout their journey.

In essence, our training and integration
strategy empowers our multi-agent tourist
guide to provide users with a nuanced and
intelligent conversational experience. The
combination of Rasa's robust models,
coupled with our custom Flask REST API
architecture and seamless communication
with the .NET 6 REST API, forms the
backbone of our system, enabling it to
seamlessly address a spectrum of traveler
needs, from general inquiries to detailed
attraction-specific interactions.

from flask import Flask, jsonify, request
import rasa.core.agent
from waitress import serve
def create_app(test_config=None):
 app = Flask(__name__)
 agents = dict()
 endpoints = "endpoints.yml"
@app.route('/initialize/<int:scenario_id>'

, methods=['POST'])
 async def initialize(scenario_id):
 model_path =

request.get_json()['modelPath']
 endpoint_config =

rasa.core.utils.read_endpoints_from_path(e
ndpoints)

 # Intentionally overriding the model
setting in the endpoint config for now

 endpoint_config.model = None
 agents[scenario_id] = await

rasa.core.agent.load_agent(
 model_path = model_path,
 endpoints = endpoint_config
)
 return '', 204
 @app.route('/send-

message/<string:conversation_id>/<int:scen
ario_id>', methods=['POST'])

 async def
send_message(conversation_id,
scenario_id):

 message =
request.get_json()['message']

 if scenario_id not in agents.keys():
 return '', 403
 results = []
 responses = await

agents[scenario_id].handle_text(message,
None, conversation_id)

 for response in responses:
 if "text" in response:

results.append(response["text"])
 return jsonify(results)
 return app
serve(create_app(), host="rasa.local",

port=8080)
This code defines a Flask web

application that serves as a communication
bridge between your custom application
and Rasa chatbot agents. It initializes and
manages Rasa agents for different scenarios
and allows you to send messages to these
agents for generating responses.

Here's a breakdown of the code:
Importing Necessary Libraries:
from flask import Flask, jsonify, request:

Imports the Flask framework for building
web applications and other essential
libraries for handling JSON and HTTP
requests.

import rasa.core.agent: Imports the Rasa
Core Agent, which is used to load and
manage Rasa models.

from waitress import serve: Imports the
Waitress web server, which is used to serve
the Flask application.

Creating the Flask Application:
create_app(test_config=None): This

function creates a Flask application

142
International Scientific Conference “UNITECH 2023” – Gabrovo

instance. It's a standard pattern in Flask
applications to have a function for creating
the app instance.

Initializing Agents:
app = Flask(__name__): Initializes the

Flask application.
agents = dict(): Initializes a dictionary

called agents to store Rasa agents for
different scenarios.

endpoints = "endpoints.yml": Specifies
the path to an endpoints configuration file,
which defines the settings for Rasa agents.

Endpoint for Initializing Rasa Agents:
@app.route('/initialize/<int:scenario_id>'

, methods=['POST']): Defines a route that
listens for HTTP POST requests at the
/initialize/<int:scenario_id> URL. This
endpoint is used to initialize Rasa agents for
specific scenarios.

The initialize(scenario_id) function loads
a Rasa agent based on the provided
modelPath and stores it in the agents
dictionary under the specified scenario_id.

The endpoint_config is read from the
endpoints.yml file, and the model setting is
intentionally overridden to None. This
allows the endpoint to load the agent with a
custom model.

The loaded agent is stored in the agents
dictionary using the scenario_id as the key.

Endpoint for Sending Messages to Rasa
Agents:

@app.route('/send-
message/<string:conversation_id>/<int:scen
ario_id>', methods=['POST']): Defines a
route that listens for HTTP POST requests
at the /send-
message/<string:conversation_id>/<int:scen
ario_id> URL. This endpoint is used to
send messages to Rasa agents for
generating responses.

The send_message(conversation_id,
scenario_id) function retrieves the
incoming message from the request JSON.

It checks if the specified scenario_id
exists in the agents dictionary. If not, it
returns a 403 status code (Forbidden).

It then uses the loaded Rasa agent to
handle the incoming message, specifying
the conversation_id. The result is a list of
responses.

The responses are extracted, and if a
"text" field exists in a response, it is added
to the results list.

Finally, the responses are returned as a
JSON array.

Running the Flask Application:
serve(create_app(), host="rasa.local",

port=8080): This line starts the Waitress
web server, serving the Flask application
created by create_app(). It listens on host
"rasa.local" and port 8080.

This code provides a RESTful API using
Flask to initialize and interact with Rasa
chatbot agents for different scenarios. It
allows you to send messages to these agents
and retrieve their responses, making it a
crucial component of your multi-agent
tourist guide system.

Within our multi-agent tourist guide, we
employ SQL Server as a robust storage
solution for Rasa models. The table
structure adopted for this purpose
comprises two essential elements: model
titles and the corresponding disk physical
paths. This structured approach to model
storage enhances efficiency, scalability, and
reliability, contributing to an elevated user
experience.

ChatGPT, which stands for Chat
Generative Pre-trained Transformer, is a
large language model–based chatbot
developed by OpenAI and launched on
November 30, 2022, which enables users to
refine and steer a conversation towards a
desired length, format, style, level of detail,
and language used. Successive prompts and
replies, known as prompt engineering, are
considered at each conversation stage as a
context [3].

We have implemented a seamless
interaction with the OpenAI GPT-based
chatbot API to enhance the conversational
capabilities of our multi-agent tourist guide
application.

To initiate this interaction, we utilize the
following code:

 OpenAIAPI api = new
OpenAIAPI(setting.OpenAiKey);

 var chat =
api.Chat.CreateConversation();

 chat.AppendUserInput(question);
 var result = await

chat.GetResponseFromChatbotAsync();
The code above can be dissected into the

following steps:
Initialization of the OpenAI API:

143
International Scientific Conference “UNITECH 2023” – Gabrovo

We begin by initializing an instance of
the OpenAIAPI class, where
setting.OpenAiKey represents the API key
or authentication token required to access
the OpenAI GPT model.

Creation of a Conversation:
Within our application, we create a new

conversation using the CreateConversation
method. This step signifies the initiation of
a dialogue with the chatbot, preparing the
conversation context.

User Input Appending:
Subsequently, we append the user's input

or question (represented by the variable
question) to the ongoing conversation. This
user input forms the basis for the chatbot's
response generation.

Response Retrieval:
Finally, we execute an asynchronous

operation,
GetResponseFromChatbotAsync(), which
sends the user's input to the OpenAI GPT
model. We await the response generated by
the chatbot, which is based on the user's
input and the model's pre-trained
knowledge.

In essence, this code represents the
pivotal interaction between our tourist
guide application and the OpenAI GPT-
based chatbot. It enables users to
seamlessly seek information, ask questions,
and engage in meaningful dialogues about
Gabrovo and its attractions. This interaction
forms a crucial element of our multi-agent
tourist guide, enriching the user experience
by providing informative and contextually
relevant responses.

CONCLUSION

In conclusion, our paper has presented a
comprehensive framework for the
development and deployment of a Multi-
Agent Tourist Guide tailored to the Gabrovo
region and its environs. The primary
objective of our endeavor has been to harness
the capabilities of Large Language Models
(LLMs) and Natural Language
Understanding (NLU) to offer a rich and
informative experience to travelers.

Our approach has integrated state-of-the-
art technologies, with the incorporation of
Rasa for intelligent chatbot functionality and
the integration of ChatGPT for dynamic and
context-aware conversations. The foundation

of our system has rested on Jason, a robust
agent-based framework, which has played a
pivotal role in orchestrating interactions and
delivering highly personalized experiences to
users.

Notable facets of our system have
included the implementation of a .NET 6
REST API to facilitate seamless
communication, enabling Jason to engage
with Rasa and ChatGPT. Furthermore, we
have underscored the critical role of SQL
Server in efficiently managing model titles
and physical locations, contributing
significantly to the responsiveness and
dependability of our tourist guide.

Our system has adhered to a proactive

approach, initiating conversations based on
user GPS location, thereby ensuring that
travelers receive timely and contextually
relevant information about nearby attractions.
Moreover, we have seamlessly integrated a
mobile application enriched with voice and
chatbot functionalities, enhancing user
engagement and accessibility.

Throughout the development process, we
have elucidated the practical application of
Rasa and ChatGPT, demonstrating their
pivotal roles in facilitating conversations,
addressing inquiries, and providing insightful
details about Gabrovo and its array of
attractions.

Our Multi-Agent Tourist Guide signifies a
fusion of cutting-edge technologies and
pragmatic utility, conceived to offer travelers
an intelligent and immersive companion for
exploring Gabrovo and its encompassing
regions. By harnessing the potency of LLMs,
NLU, and agent-based frameworks, we have
created a system adept at catering to the
diverse requirements of tourists, delivering
tailored and information-rich experiences.

REFERENCE
 [1] Introduction to Rasa Open Source & Rasa

Pro. Available online:
https://rasa.com/docs/rasa/ (23 September
2023)

[2] Italo, Maia, Building Web Applications
with Flask; Publisher: Packt Publishing Ltd
2015; pp. 1.

[3] ChatGPT. Available online:
https://en.wikipedia.org/wiki/ChatGPT (23
September 2023)

	introduction
	exposition
	CONCLUSION
	REFERENCE

