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Abstract 
This article describes development, analysis, application, and simulation of a recursive Time Frequency Locked Loop 

(TFLL) based on the measurement and processing of the periods of the input and output signals. TFLL is a linear discrete 
system of the second order, which regulates its output once per the input period. The parameters of TFLL are determined by 
the ratios of clock frequencies which have to be in the predefined relationships for the stable functioning of TFLL. 
Mathematical description, analysis of stability conditions and properties of TFLL are performed using Z transform. The 
relations of the parameters which correspond to the specific applications are analyzed. Using mathematical analyses and 
simulations, it is shown that TFLL is suitable for powerful noise rejection, for the different predicting and tracking 
applications, for the measurements of the frequency, for the filtering of impulse signal periods as well as for the other usual 
applications of FLL. Special emphasis is given to the development of a Time digital filter based on TFLL, using the theory of 
digital filters and the Mat-lab tools intended for digital filters. 
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INTRODUCTION 

Time Frequency Locked Loop (TFLL), 
Time Phase Locked Loop (TPLL) and Time 
digital filter are based on the processing of 
the periods of the input and output impulse 
signals and time differences between them. 
They are recently described in refs. [1 to 
12]. They represent one fundamentally new 
approach in the scientific literature from the 
point of view of constructions, descriptions, 
way of signal processing, way of analyzes 
and applications. The applications of these 
systems are numerous. In addition to digital 
filtering of the pulse signal period, they are 
applied in the field of tracking and 
prediction, phase and time shifting, 
frequency multipliers, frequency 
synthesizers, noise rejections, averaging of 
the periods, frequency measurement and the 
others. 

In this article, we will present the full 
recursive second-order TFLL model, 
perform various analyses in the time and 
frequency domain, make simulations and 
describe the development of Time digital 

filter, based on TFLL. In addition, we will 
demonstrate some of its applications. 

The articles and books [13-24] are used 
as the theoretical and mathematical base.  
 
DESCRIPTION AND ANALYSIS OF FLL 

The general case of the input and output 
signals Sin and Sop for TFLL of M-th 
order, is shown in Fig. 1. Periods TIk and 
TOk, as well as the time differences τk, 
occur at discrete times tk, tk+1, tk+2,…tk+M-1, 
tk+M, which are defined by the falling edges 
of the pulses of Sop. The difference 
equations of full second-order TFLL2 are 
presented in eq. (1), where  

 

 
 

Fig. 1. Time relations between the input and 
output variables of TFLL of the M-th order. 
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b1, b2, a1 and a2 are the system parameters 
of FLL2. One additional natural relation 
between the time variables, which yields 
from Fig. 1, is shown in eq. (2). In order to 
found the transfer functions of TFLL2 let us 
find the Z transforms of eqs. (1) and (2). 
They are presented in eqs. (3) and (4). If we 
calculate TO(z) from eq. (3), we can after 
that substitute TO1=b1TI0+a1TO0 into TO(z) 
and get the final expression for TO(z), 
given by eq. (5). Note that the previous 
expression for TO1 comes out from eq. (1), 
for k = -1. If we substitute now TO(z) from 
eq. (5) into eq. (4), we can found out the 
expression for τ(z), shown in eq. (6). Two 
transfer functions describing TFLL2, which 
are given by (7) and (8), can be defined 
from (5) and (6). Note that TO0, TI0 and τ0 

in eqs. (3) and (4) are the initial conditions 
of TOk, TIk and τk. 
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In order to analyze TFLL2, let us suppose 

that the step function TI(k)=TI=constant is 
applied to the input. Z transform of TI(k) is 
TI(z)=TI·z/(z-1). If we enter TI(z)  into eq. 
(5), using the final value theorem, it is 
possible to find TO∞=limTO(k) if k→∞, 
using TO(z). This is shown in eq. (9). It 
comes out from eq. (9) that TFLL2 will be 
functional if eq. (10) is  
satisfied. Only in this case TO∞=TI. 

1
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In the same way, the final value of τ(k) if 
k→∞ can be determined. Providing that the 
step function TI(k)=TI is applied to the 
input, Tl(z) in eq. (6) should be substituted 
by TI·z/(z-1). We can find out the final 
value τ∞=lim [τ(k)]k→∞, using the final 
value theorem in Z transform notation 
τ∞=lim[(z-1)·τ(z)]z→1. Applying this 
expression, we can get τ∞, shown in eq. 
(11). As we can see from eq. (11), time 
difference τ∞ in the stable state of TFLL2 
depends on the initial conditions τ0 and 
TO0, as well as on the system parameters 
and constant input period TI. That means 
TFLL2 does not possess the properties of a 
PLL.     
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All the previous conclusions, including 

the results given by eqs. (9), (10) and (11), 
are valid only if the system is stable. TFLL2 
is the stable system if the poles |z1| < 1 and 
|z2| < 1, where z1 and z2 are the zeros of the 
polynomial z2-z·a1-a2 in eq. (7) or in eq. (8). 
The zeros z1 and z2 are shown in eq. (12). 
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The conditions |z1| < 1 and |z2| < 1 define 
the region in the plane of parameters b1 and 
b2, where TFLL is the stable system. This 
region, shown in Fig. 2, is located between 
three mathematical straight lines defined by 
a2=-1, a2=a1+1 and a2=-a1+1. 
 

 
 

Fig. 2. Figure shows the region of a1 and a2 for 
the stable TFLL2. 



71 
International Scientific Conference “UNITECH 2023” – Gabrovo 

In order to investigate the tracking 
performances of TFLL2 we will analyze the 
behavior of TOk and τk for the ramp input. 
All time variable will be expressed in time 
units (t.u.). Note that t.u. can be µs, ms, or 
any other time unit, assuming the same time 
unit for all time variables. Because of 
simplicity, “t.u.” units are omitted from the 
diagrams.   

Let us denote the tracking error of TOk 
by KTOV and the final value of time 
difference τk by τV∞, where “V” denotes that 
the input period is a velocity function 
TIV(k)=c∙k and “c” is the constant. Using 
the final value theorem, KTOV and τV∞ can 
be expressed by Z transform notation, as in 
eqs. (13) and (14). If we enter 
Z[TIV(k)]=TIV(z)=z∙c/(z-1)2 into eq. (13), 
we will get KVTO, given by eq. (15). It is 
obvious that KVTO can be equal to zero only 
if eq. (16) is satisfied. In order to calculate 
τV∞ we will first substitute b2+a2=-1 into 
(6), that is, τV(z) will get the simplified 
form. If we after that enter τV(z) in (14), we 
can calculate τV∞, shown in eq. (17).  
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Let us now analyze the abilities of TFLL2 
for the tracking of the velocity input (ramp) 
using the simulations. The simulations of 
TOk, KVTOk, and τVk , for TIk=20+5∙k [t.u.] is 
shown in Fig. 3. The simulation is made for 
three combinations of the system 
parameters and the initial conditions, which 
are presented in Fig. 3. Note that the first 
and the second combinations of parameters 
b1, b2, a1, and a2, signed by “1” and “2” 
satisfy both, eq. (16) and eq. (10). Due to 
this fact, the output periods of TO1k and 
TO2k track TIVk without error. The 
corresponding errors KVTO1k and KVTO2k 
tend to zero. Since KVTO1=KVTO2=0, the 

simulation results agree with eq. (15). Note 
also that, for the first two combinations of 
parameters, the corresponding τ1k and τ2k 
tend to respectively τV1∞ and τV2∞. 
According to eq. (17), τV1∞=-10.43 and 
τV2∞=38.50. After only eight steps τ1k=-
10.51 and τ2k=38.48, proving so the 
correctness of eq. (17). The third 
combination of parameters, signed by “3” 
in Fig. 3, satisfies eq. (10), but it does not 
satisfy eq. (16). That means TFLL is the 
stable system but it is not adapted to track 
the ramp without error. We can see in Fig. 3 
that the corresponding TOk3 tracks the input 
TIVk but with the constant error KVTO3. 
According to eq. (15) KVTO3=-6.25. After 
only eight steps, KVTO3 is about to reach the 
final value KVTO3=-6.25, proving once more 
the correctness of all previous analysis.   

 

 
 
Fig. 3. Tracking of the input ramp function for 

three combinations of parameters. 
 

 The noise rejection ability of TFLL2, in 
the function of system parameters, is 
demonstrated by simulation and shown in 
Fig. 4. The input period TIk is the step of 10 
t.u., which is strongly corrupted by the 
uniform distributed noise. The amplitude of 
noise is 9 t.u. peak to peak. Three outputs 
TO1k, TO2k, and TO3k are presented in Fig. 
4, depending on the different parameters for 
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the same input. In case of TO1k where b1 
and b2 are very small, the output periods are 
completely cleaned from noise. For ten time 
higher b1 and b2, the periods of TO2k are a 
little noisy. At last, for the large b1 and b2, 
the influence of the noisy input is the 
stronger in TO3k. Note that, even for the 
worst case, noise in TO3k is significantly 
reduced in comparison with the input noise. 
That means TFLL2 is naturally suitable 
circuit for noise rejection applications. It 
can be concluded that if the sum of a1 and 
a2 is grater, the influence of noisy input is 
smaller. Another important conclusion is 
that a larger sum of b1 and b2, in Fig. 4, 
leads to a longer transition time of the 
TFLL2. In other words, for the better noise 
rejection, the TFLL2 becomes automatically 
slower, i.e. its transition time becomes 
longer. 

  

 
 

Fig. 4. The input is strongly corrupted by noise. 
The smaller values of b1 and b2 provides better 
noise rejection and the longer transition time. 
 

DESIGN OF IIR TIME DIGITAL 
FILTER  

References [1, 2] show how to design a 
FIR (Finite Impulse Response) Time digital 
filter intended for filtering the period of an 
impulse signal based on TFLL. For this 
purpose, the theory of classical digital 
filters is used, as well as software tools 
from Mat-lab intended for the analysis and 
design of digital filters. In this article, we 
will describe the process of developing an 
IIR (Infinite Impulse Response) Time 
second-order digital filter based on TFLL. 

Using the corresponding TFLL, let us 
design a simple digital low-pass 
Butterworth filter with next properties: cut-
off frequency (3 dB), cutoff frequency fc=2 
kHz, minimum attenuation of 30 dB at stop 
band frequency, cutoff frequency of stop 
band fb=4.25 kHz and the sampling 
frequency fs=10 kHz. The first step is to 
design classical digital filter with the 
required properties. The transfer function 
Hdf of the second-order digital filter, which 
satisfies the requirements, is presented in 
eq. (18). Note that b0d=0.20657, 
b1d=0.41315, b2d=0.20657, a1d=-0.36953 
and a2d=0.19582. The frequency response 
of this filter is presented in Fig. (5). 

 
2

2

0.20657 0.41315 0.20657( )
z 0.36953 0.19582df

z zH z
z

⋅ + ⋅ +
=

− ⋅ +
   (18) 

 
Let us now determine the corresponding 

TFLL which is able to cover all zeros and 
poles of the transfer function Hdf(z). All 
zeros and poles can cover TFLL3 whose 
difference equation is shown in eq. (19). 
That is the third-order TFLL3, but it is not 
full version. The part  

 

 
 

Fig. 5. Frequency response of Butterworth 
digital low-pass filter satisfies all requirements. 
 
 “a3·TOk” is missing from eq. (19). The 
transfer function of TFLL3 is presented in 
eq. (20). We can see that the transfer 
functions HTO3(z) and Hdf(z) possess the 
same number of zeros and poles. If we now 
define b1=b0d=0.20657, b2=b1d=0.41315, 
b3=b2d= 0.20657, a1=-a1d=0.36953 and a2=-
a2d=-0.19582, eq. (20) will turn into eq. 
(21). By comparing eqs. (18) and (21), we 
can see that the ratio of Hdf(z) and HTO3(z) 
is given in eq. (22). They differ only for 
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factor “z-1”. It means that the transfer 
function HTO3(z) enters   an additional delay 
of the input signal in comparison to the 
transfer function Hdf(z). This delay is 2π 
[rad] for the full range of the sampling rate, 
i.e. π [rad] for the half of the sampling rate. 
The frequency response of the TFLL3 is 
presented in Fig. (6). We can see in 
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Fig. 6. Frequency response of Butterworth 
Time digital low-pass filter based on TFLL3. 

 
Figs. (5) and (6) that the magnitudes of 
digital filter and TFLL3 are identical, but 
the phases differ for expected – π [rad] for 
the half range of the sampling rate. The 
requirements for Time digital filter based 
on TFLL3 are fulfilled, proving the 
correctness of the previous analysis and 
presentations.  

 
                  1

3 ( ) ( )TO dfH Hz z z−= ⋅                (22) 

 
CONCLUSION 

The described design of TFLL represent 
the further deepening to the recently 
described theory, design and application of 
TFLL, TPLL and Time digital filter, 
presented in refs. [1] to [12].  

This TFLL2 offers considerably wider 
possibility for the choice of the system 
parameters in comparison with similar 
TFLL of the first order, described in ref. 

[9]. In this respect TFLL2 possesses better 
performances in the noise rejection 
applications. The advantages of this TFLL2 
are especially evident in the applications 
which require the trading of the extent of 
noise suppression and reduction of the 
system transient time. This TFLL2 is also 
more powerful in the tracking applications 
in comparison to TFLL described in ref. 
[9]. Unlike TFLL in ref. [9] which is able to 
track the ramp input but with the constant 
error, this TFLL2 provides the tracking of 
the ramp input without any error. 

It is of interest to emphasize that TFLLs 
and the classical digital filters represent 
completely different types of systems. The 
first one is based on the processing of the 
periods of the impulse signals and time 
differences between them. In other word 
TFLLs process the time. The other ones are 
based on the processing of amplitudes. 
Regardless of that, the article showed that 
Mat-lab tools and the theory of IIR digital 
filters can be completely used for the 
analyzes and design of TFLLs in the 
frequency domain, as well as for the design 
of Time digital filters, based on TFLLs. In 
this work, it was shown practically how to 
understand the physical aspects of the 
TFLL processing, compared with the digital 
filter processing and how to identify the 
meanings of TFLL variables which we 
come across the usage of Mat-lab tools. 
Due to the mentioned contributions, Time 
Recursive Processing has got new 
weightiness and significance in the different 
scientific fields. 
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