
118
International Scientific Conference “UNITECH 2022” – Gabrovo

INTERNATIONAL SCIENTIFIC CONFERENCE
18-19 November 2022, GABROVO

IMPLEMENTATION OF THE HARDWARE MODULE FOR IMAGE
SKELETONIZATION SYSTEM

Jana Janković

Faculty of Technical Sciences
University of Novi Sad

e-mail: jana.jankovic99@yahoo.com

Abstract
This paper presents realization and implementation of a system for skeletonization of binary images. The

skeletonization algorithm is based on iterative parallel thinning approach. The purpose of this work was to exploit the
parallelism of algorithm by implementing it in hardware block that will process more image pixels in parallel. The
hardware block for algorithm acceleration is implemented and embedded in the system.

Keywords: Skeletonization, FPGA, Hardware accelerator.

INTRODUCTION

 Skeletonization is an image pre-
processing technique that is important in a
number of applications like pattern recognition,
data compression and data storage. All
algorithms can be classified as either iterative
or non-iterative. In iterative methods, algorithms
produce a skeleton by examining and deleting
contour pixels through an iterative process in
either sequential or parallel way.[1] The
Zhang-Suen algorithm is probably the most
used parallel algorithm for skeletonization. Instead
of implementing algorithms by programs
executed in a general purpose computer, to
obtain better performance and efficiency, it is
sometimes beneficial to realize an algorithm in
custom hardware. The register transfer
methodology provides a systematic way to
convert an algorithm into hardware. [2]

EXPOSITION

In a parallel algorithm, the deletion of
pixels in the nth iteration would depend only
on the result that remains after the (n − 1)th
iteration; therefore, all pixels can be examined
independently in a parallel manner in each
iteration.[3]

DISCLAIMER:
This work resulted from the bachelor thesis whose
mentor was Vuk Vranjković, PhD.

In hardware module every pixel will be
examined by functional unit called worker.
Module has parametrized number of workers
(NUM_WORKERS) and parametrized
BRAM dimensions (WIDTH, DEPTH) which
requires three different architectures of
hardware module. Workers will process a
pixel in one cycle, so the maximum number of
workers is limited to a number for two smaller
than the width of the BRAM.

Interface

• Input interface
height_i – type STD_LOGIC_

VECTOR ld(DEPTH)-1 downto 0)
– represents the number of image
rows.

last_px – type STD_LOGIC_
VECTOR (ld(PARAMETAR)
downto 0) – represents the number
of worker who will receive the
right border pixel at the entrance.

num_px – type STD_LOGIC_
VECTOR (ld(WIDTH-2)/
PARAMETAR+1) downto 0) –
represents the number of pixels that
the worker who does not process
the last pixel, should process in one
row of the image.

 2022

119
International Scientific Conference “UNITECH 2022” – Gabrovo

• AXI-Stream slave interface
sdata – type STD_LOGIC_

VECTOR (63 downto 0) – the
input data bus, represents the 64
pixels of the image that needs to be
processed.

svalid – type STD_LOGIC–
indicates whether the data sent by
the external component is valid.

sready – type STD_LOGIC–
indicates whether the module is
ready to receive the data sent by the
external component.

• AXI-Stream master interface
mdata – type STD_LOGIC_

VECTOR (63 downto 0) – output
data bus, represents 64 pixels of the
processed image.

mvalid – type STD_LOGIC–
indicates whether the data sent by
the module is valid.

mready – type STD_LOGIC–
indicates whether the external
component is ready to receive the
data sent by the module.

• Command interface
start – type STD_LOGIC – module

starts working when the start signal is
activated.

• Status interface
ready – type STD_LOGIC -

asserted when the module is ready to
accept new inputs.

In addition to these ports, the digital
system must also have standard ports for clock
and reset signals, clk and rst. Figure 1 shows
the complete interface of the image
skeletonization module.

Fig. 1. Hardware module interface

Controlpath
In the ASM diagram, for all three

architectures, the first six and the last three
states are identical. In the first, idle state, it
waits for an instruction to start processing. In
the second, shift state, the content of the
register is shifted to the left, while the data
arriving from the DMA controller is written to
the beginning. In the third state, the contents of
the register is written to BRAM. The next
three states load the first three rows of the
image from BRAM into the three registers, so
that the workers can process them. In state l1,
it is checked whether the skeletonization
process has been completed. In the
penultimate state, content is loaded from the
appropriate location from BRAMA into the
register. In the last state (shift1), via the AXI-
Stream interface, the lower 64 bits are sent and
then the contents of the register are shifted to
the right.

For the first architecture, the BRAM width
minus two is equal to the number of workers,
it is specific that all the pixels of one row of
the image are processed in one clock. This
happens in the worker state. At the same time,
the outputs of the register red2_reg are fed to
the input of the register red1_reg, the outputs
red3_reg are output to the inputs red2_reg, and
the next line of the image from BRAM is fed
to the inputs red3_reg. In this way, a new row
of the image will be processed in the next
cycle. The results of workers are also placed in
the rez_reg register and its contents are written
into BRAM in the next cycle. The outputs of
the worker representing the variable flag are
fed to the inputs of the register flags_reg.
Figures 2 and 3 show the ASM diagram of the
first architecture.

The second architecture, the BRAM width
minus two is divisible by the number of
workers. Due to the smaller number of
workers, it is necessary to move the contents
of the registers every cycle, in order to allow
all pixels to appear at the worker inputs. This
happens in the states workeri2 and workeri3.
The content of the rez_reg register is also
moved to the left, while the results of the
worker processing are written at the end. In the
worker state, as with the previous architecture,
the content of the register red2_reg is written

120
International Scientific Conference “UNITECH 2022” – Gabrovo

into the register red1_reg, the content of
red3_reg into red2_reg and into red3_reg the
new image row. The difference is that now it is
necessary to properly connect the outputs and
inputs of the registers, because, due to the
previous shift, the pixels located at the end of
the row were at the beginning.

The difference between the second and
third architectures is in the writing the results
of workers in the register rez_reg. In the third
architecture, the number of pixels processed is
not divisible by the number of workers, which
means that when the last group of pixels is
processed, pixels that have already been
processed will appear at the inputs of some
workers, and their processing results are not
written into rez_reg.

Fig. 2. ASMD of first architecture- first part

Fig. 3. ASMD of first architecture- second part

121
International Scientific Conference “UNITECH 2022” – Gabrovo

 Datapath
Hardware module for skeletonization

consists of workers that examine pixels.
Structure of the worker is shown in figure 4.

Fig. 4. Structure of the worker

The inputs of the worker are connected to
the outputs of the registers in which the rows
of the image are located. Additional worker
inputs are register outputs that indicate
whether a pixel needs to be processed and
whether it is the first or second iteration of the
algorithm. The worker outputs are connected
to the register in which the processed image
row is placed. The additional output of the
worker is connected to the register flags_reg in
which the values of the flag variable are
placed.

The output of that register goes to the
inputs or gate to determine if at least one
worker has changed the pixel value. Since the
number of workers can be large, in order to
reduce the path, instead of a cascaded chain of
two-input or gates, a parameterized tree
structure was implemented (Figure 5). The
output of the circuit is fed to the input of the
register whose output is fed back to the input
of the circuit. This needs to be done so that the
value of the flag variable, from the processing
of the previous group of pixels, will be taken
into account during the next calculation, and in
this way it will be possible to know at the end
of passing through the entire image whether
any pixel of the image has been changed.

Fig. 5. Parameterized tree structure of or gate

For each of the module architectures, there
is a data routing network and memory
elements. In case of the first architecture, there
are eleven registers in the module (Figure 6):
three registers are used to save the rows of the
image that are being processed, one register is
used to store the processing result, two
registers are used to store address values, and
one register is used to store write permissions.
in memory, one register helps in calculating
positions, one register that stores information
about whether it is the first or second iteration,
one register based on the value of which the
worker decides whether to process a pixel and
one register that stores the values of the flag
variable.

Fig. 6. Data routing network and memory elements

for first architecture

122
International Scientific Conference “UNITECH 2022” – Gabrovo

In case of the second and third
architectures, a register was added to track
which group of pixels is being processed. The
other registers are the same, the difference is
in the values that are written into them.

Inside the module there is a BRAM
memory with parameterized dimensions in
which the image is stored. Figure 7 shows
which datapath signals the BRAM memory is
connected to.

Fig. 7. Signals connected to BRAM interface

DMA reads 64-bit data from memory

and sends it to the module, which then stores it
in BRAM, one location of which can be more
than 64 bits wide. Due to the difference in
width of the data being exchanged, it is
necessary to perform a width conversion. This
is done using the shift register. After the data
is placed in the lower 64 bits of the register,
the content of the register is shifted, so that the
next data can be received. When the register is
full, the contents of the register are written to
BRAM. When data is sent to the DMA
component, the contents of BRAM are first
written to a register. The upper 64 bits of the
register are connected to the m_axis_s2mm
_tdata bus of the DMA component. After the
first 64 bits are read, the contents of the
register are shifted to read the next 64 bits. The
process is repeated until the entire image is
sent.
Integration in Zynq platform

After the IP core is designed, the system
can be implemented. Using the Vivado
integrator, the IP core is connected to existing
components into a single system (Figure 8).
The system consists of a Zynq7 processor, a
DMA controller, an IP core that performs
image skeletonization, and two interconnect
components. The processor is connected to the

DMA controller and the IP core via AXI-Lite
interface using an AXI interconnect. The IP
core is connected via AXI-Stream slave and
master interface to the DMA controller. The
DMA controller is connected via the AXI-Full
interface to the memory.

Fig. 8. Block diagram of the system

Resource utilization and operating
frequency

After the implementation of the system,
where the values of 510 worker and 512 for
BRAM dimensions were selected for the IP
core parameters, a time analysis was
performed. The maximum operating frequency
of the system is 142MHz.

Using the Vitis tool, an application was
created that tests the system, and using the
timing functions, it was measured that the
delay of the system, is 241us, which means
that its throughput is 4165 images per second.

The consumption of hardware resources is
shown in Tables 1, 2. LUTs were used the
most, followed by BRAM memory, while
DSPs were not used at all in the design. Figure
9 shows the spatial distribution of used
resources.
Table 1. Logic gates utilization

123
International Scientific Conference “UNITECH 2022” – Gabrovo

Table 2. BRAM utilization

For systems with a smaller number of

workers, the difference in frequency is not
significant, while the differences in resource
consumption can be seen in Table 3.

Table 3. Resource utilization for different
parameter values

Fig. 9. Spatial distribution of used resources

CONCLUSION
The goal of this paper was to implement a

system for image skeletonization. For
implementation of the skeletonization process,
the Zhang-Suen algorithm was chosen. The
hardware block was successfully implemented in
VHDL, using RTL methodology. The realized
IP core has a parameterized number of
functional units - workers that process pixels,
which can be changed according to available
resources and desired image processing speed.
The IP core, using the AXI-Stream interface,
through the DMA controller receives and sends
the image before and after processing.

Implementing a system that would
potentially utilize less resources than
implemented system, would require, the
implementation of an AXI controller inside the
core, instead of DMA controller, which would
instead of the AXI-Stream interface, use AXI-
Full interface for memory access.

REFERENCE
[1] Khalid Saeed, Marek Tabedzki, Mariusz

Rybnik, Martin Adamski, „K3M: A universal
algorithm for image skeletonization and a
review of thinning techniques”, Int. J. Appl.
Math. Comput. Sci., 2010, Vol. 20, No. 2, 317–
335

[2] Pong P. Chu, „RTL Hardware Design Using
VHDL”, Wiley-Interscience, 2006

[3] Lynda Ben Boudaoud, Abderrahmane Sider,
Abdelkamel Tari, „A new thinning algorithm
for binary images”, 3rd International
Conference on Control, Engineering &
Information Technology (CEIT) 2015

	introduction
	exposition
	Interface
	Controlpath

	Integration in Zynq platform
	Resource utilization and operating frequency
	CONCLUSION
	REFERENCE

