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Abstract 
This paper presents realization and implementation of a system for skeletonization of binary images. The 

skeletonization algorithm is based on iterative parallel thinning approach. The purpose of this work was to exploit  the 
parallelism of algorithm by implementing it in hardware block that will process more image pixels in parallel. The 
hardware block for algorithm acceleration is implemented and embedded in the system.  

 
Keywords: Skeletonization, FPGA, Hardware accelerator. 
 
 
INTRODUCTION 

    Skeletonization is an image pre-
processing technique that is important in a 
number of applications like pattern recognition, 
data compression and data storage. All 
algorithms can be classified as either iterative 
or non-iterative. In iterative methods, algorithms 
produce a skeleton by examining and deleting 
contour pixels through an iterative process in 
either sequential or parallel way.[1] The 
Zhang-Suen algorithm is probably the most 
used parallel algorithm for skeletonization. Instead 
of implementing algorithms by programs 
executed in a general purpose computer, to 
obtain better performance and efficiency, it is 
sometimes beneficial to realize an algorithm in 
custom hardware. The register transfer 
methodology provides a systematic way to 
convert an algorithm into hardware. [2] 
   
EXPOSITION 

In a parallel algorithm, the deletion of 
pixels in the nth iteration would depend only 
on the result that remains after the (n − 1)th 
iteration; therefore, all pixels can be examined 
independently in a parallel manner in each 
iteration.[3]  
 

DISCLAIMER: 
This work resulted from the bachelor thesis whose 
mentor was Vuk Vranjković, PhD. 

In hardware module every pixel will be 
examined by functional unit called worker. 
Module has parametrized number of workers 
(NUM_WORKERS) and parametrized  
BRAM dimensions (WIDTH, DEPTH) which 
requires three different architectures of 
hardware module. Workers will process a 
pixel in one cycle, so the maximum number of 
workers is limited to a number for two smaller 
than the width of the BRAM. 

Interface 

• Input interface 
height_i – type STD_LOGIC_ 

VECTOR ld(DEPTH)-1 downto 0) 
– represents the number of image 
rows. 

last_px – type STD_LOGIC_ 
VECTOR (ld(PARAMETAR) 
downto 0) – represents the number 
of worker who will receive the 
right border pixel at the entrance. 

num_px – type STD_LOGIC_ 
VECTOR (ld(WIDTH-2)/ 
PARAMETAR+1) downto 0) – 
represents the number of pixels that 
the worker who does not process 
the last pixel, should process in one 
row of the image. 
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• AXI-Stream slave interface 
sdata – type STD_LOGIC_ 

VECTOR (63 downto 0) – the 
input data bus, represents the 64 
pixels of the image that needs to be 
processed.  

svalid – type STD_LOGIC– 
indicates whether the data sent by 
the external component is valid.  

sready – type STD_LOGIC–  
indicates whether the module is 
ready to receive the data sent by the 
external component. 

• AXI-Stream master interface 
mdata – type STD_LOGIC_ 

VECTOR (63 downto 0) – output 
data bus, represents 64 pixels of the 
processed image.  

mvalid – type STD_LOGIC– 
indicates whether the data sent by 
the module is valid.  

mready – type STD_LOGIC– 
indicates whether the external 
component is ready to receive the 
data sent by the module. 

• Command interface 
start – type STD_LOGIC – module 

starts working when the start signal is 
activated. 

• Status interface 
ready – type STD_LOGIC  - 

asserted when the module is ready to 
accept new inputs. 

In addition to these ports, the digital 
system must also have standard ports for clock 
and reset signals, clk and rst. Figure 1 shows 
the complete interface of the image 
skeletonization module. 

 
Fig. 1. Hardware module interface 

Controlpath 
In the ASM diagram, for all three 

architectures, the first six and the last three 
states are identical. In the first, idle state, it 
waits for an instruction to start processing. In 
the second, shift state, the content of the 
register is shifted to the left, while the data 
arriving from the DMA controller is written to 
the beginning. In the third state, the contents of 
the register is written to BRAM. The next 
three states load the first three rows of the 
image from BRAM into the three registers, so 
that the workers can process them. In state l1, 
it is checked whether the skeletonization 
process has been completed. In the 
penultimate state, content is loaded from the 
appropriate location from BRAMA into the 
register. In the last state (shift1), via the AXI-
Stream interface, the lower 64 bits are sent and 
then the contents of the register are shifted to 
the right.  

For the first architecture, the BRAM width 
minus two is equal to the number of workers, 
it is specific that all the pixels of one row of 
the image are processed in one clock. This 
happens in the worker state. At the same time, 
the outputs of the register red2_reg are fed to 
the input of the register red1_reg, the outputs 
red3_reg are output to the inputs red2_reg, and 
the next line of the image from BRAM is fed 
to the inputs red3_reg. In this way, a new row 
of the image will be processed in the next 
cycle. The results of workers are also placed in 
the rez_reg register and its contents are written 
into BRAM in the next cycle. The outputs of 
the worker representing the variable flag are 
fed to the inputs of the register flags_reg. 
Figures 2 and 3 show the ASM diagram of the 
first architecture. 

The second architecture, the BRAM width 
minus two is divisible by the number of 
workers. Due to the smaller number of 
workers, it is necessary to move the contents 
of the registers every cycle, in order to allow 
all pixels to appear at the worker inputs. This 
happens in the states workeri2 and workeri3. 
The content of the rez_reg register is also 
moved to the left, while the results of the 
worker processing are written at the end. In the 
worker state, as with the previous architecture, 
the content of the register red2_reg is written 
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into the register red1_reg, the content of 
red3_reg into red2_reg and into red3_reg the 
new image row. The difference is that now it is 
necessary to properly connect the outputs and 
inputs of the registers, because, due to the 
previous shift, the pixels located at the end of 
the row were at the beginning. 

The difference between the second and 
third architectures is in the writing the results 
of workers in the register rez_reg. In the third 
architecture, the number of pixels processed is 
not divisible by the number of workers, which 
means that when the last group of pixels is 
processed, pixels that have already been 
processed will appear at the inputs of some 
workers, and their processing results are not 
written into rez_reg. 

 
Fig. 2. ASMD of first architecture- first part 

 

 
Fig. 3. ASMD of first architecture- second part 



121 
International Scientific Conference “UNITECH 2022” – Gabrovo 

 Datapath 
Hardware module for skeletonization 

consists of workers that examine pixels. 
Structure of the worker is shown in figure 4. 

 
Fig. 4.  Structure of the worker 

The inputs of the worker are connected to 
the outputs of the registers in which the rows 
of the image are located. Additional worker 
inputs are register outputs that indicate 
whether a pixel needs to be processed and 
whether it is the first or second iteration of the 
algorithm. The worker outputs are connected 
to the register in which the processed image 
row is placed. The additional output of the 
worker is connected to the register flags_reg in 
which the values of the flag variable are 
placed. 

The output of that register goes to the 
inputs or gate to determine if at least one 
worker has changed the pixel value. Since the 
number of workers can be large, in order to 
reduce the path, instead of a cascaded chain of 
two-input or gates, a parameterized tree 
structure was implemented (Figure 5). The 
output of the circuit is fed to the input of the 
register whose output is fed back to the input 
of the circuit. This needs to be done so that the 
value of the flag variable, from the processing 
of the previous group of pixels, will be taken 
into account during the next calculation, and in 
this way it will be possible to know at the end 
of passing through the entire image whether 
any pixel of the image has been changed. 

 
Fig. 5. Parameterized tree structure of or gate 

For each of the module architectures, there 
is a data routing network and memory 
elements. In case of the first architecture, there 
are eleven registers in the module (Figure 6): 
three registers are used to save the rows of the 
image that are being processed, one register is 
used to store the processing result, two 
registers are used to store address values, and 
one register is used to store write permissions. 
in memory, one register helps in calculating 
positions, one register that stores information 
about whether it is the first or second iteration, 
one register based on the value of which the 
worker decides whether to process a pixel and 
one register that stores the values of the flag 
variable. 

 
Fig. 6. Data routing network and memory elements 

for first architecture 
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In case of the second and third 
architectures, a register was added to track 
which group of pixels is being processed. The 
other registers are the same, the difference is 
in the values that are written into them. 

Inside the module there is a BRAM 
memory with parameterized dimensions in 
which the image is stored. Figure 7 shows 
which datapath signals the BRAM memory is 
connected to. 

 
Fig. 7. Signals connected to BRAM interface 

 
DMA reads 64-bit data from memory 

and sends it to the module, which then stores it 
in BRAM, one location of which can be more 
than 64 bits wide. Due to the difference in 
width of the data being exchanged, it is 
necessary to perform a width conversion. This 
is done using the shift register. After the data 
is placed in the lower 64 bits of the register, 
the content of the register is shifted, so that the 
next data can be received. When the register is 
full, the contents of the register are written to 
BRAM. When data is sent to the DMA 
component, the contents of BRAM are first 
written to a register. The upper 64 bits of the 
register are connected to the m_axis_s2mm 
_tdata bus of the DMA component. After the 
first 64 bits are read, the contents of the 
register are shifted to read the next 64 bits. The 
process is repeated until the entire image is 
sent. 
Integration in Zynq platform 

After the IP core is designed, the system 
can be implemented. Using the Vivado 
integrator, the IP core is connected to existing 
components into a single system (Figure 8). 
The system consists of a Zynq7 processor, a 
DMA controller, an IP core that performs 
image skeletonization, and two interconnect 
components. The processor is connected to the 

DMA controller and the IP core via AXI-Lite 
interface using an AXI interconnect. The IP 
core is connected via AXI-Stream slave and 
master interface to the DMA controller. The 
DMA controller is connected via the AXI-Full 
interface to the memory. 

 
Fig. 8. Block diagram of the system 

 
Resource utilization and operating 
frequency 

After the implementation of the system, 
where the values of 510 worker and 512 for 
BRAM dimensions were selected for the IP 
core parameters, a time analysis was 
performed. The maximum operating frequency 
of the system is 142MHz. 

Using the Vitis tool, an application was 
created that tests the system, and using the 
timing functions, it was measured that the 
delay of the system, is 241us, which means 
that its throughput is 4165 images per second. 

The consumption of hardware resources is 
shown in Tables 1, 2. LUTs were used the 
most, followed by BRAM memory, while 
DSPs were not used at all in the design. Figure 
9 shows the spatial distribution of used 
resources. 
Table 1. Logic gates utilization 

 



123 
International Scientific Conference “UNITECH 2022” – Gabrovo 

Table 2. BRAM utilization 

 
For systems with a smaller number of 

workers, the difference in frequency is not 
significant, while the differences in resource 
consumption can be seen in Table 3. 

Table 3. Resource utilization for different 
parameter values 

 
 

 
Fig. 9. Spatial distribution of used resources 

CONCLUSION 
The goal of this paper was to implement a 

system for image skeletonization. For 
implementation of the skeletonization process, 
the Zhang-Suen algorithm was chosen. The 
hardware block was successfully implemented in 
VHDL, using RTL methodology. The realized 
IP core has a parameterized number of 
functional units - workers that process pixels, 
which can be changed according to available 
resources and desired image processing speed. 
The IP core, using the AXI-Stream interface, 
through the DMA controller receives and sends 
the image before and after processing. 

Implementing a system that would 
potentially utilize less resources than 
implemented system, would require, the 
implementation of an AXI controller inside the 
core, instead of DMA controller, which would 
instead of the AXI-Stream interface, use AXI-
Full interface for memory access. 
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